These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 27072506)

  • 1. Rapid and Efficient One-Step Metabolic Pathway Integration in E. coli.
    Bassalo MC; Garst AD; Halweg-Edwards AL; Grau WC; Domaille DW; Mutalik VK; Arkin AP; Gill RT
    ACS Synth Biol; 2016 Jul; 5(7):561-8. PubMed ID: 27072506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The discovery and development of the CRISPR system in applications in genome manipulation.
    Lau V; Davie JR
    Biochem Cell Biol; 2017 Apr; 95(2):203-210. PubMed ID: 28103055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming.
    Wu Y; Liu Y; Lv X; Li J; Du G; Liu L
    ACS Synth Biol; 2020 Sep; 9(9):2228-2238. PubMed ID: 32794766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing.
    Li Y; Lin Z; Huang C; Zhang Y; Wang Z; Tang YJ; Chen T; Zhao X
    Metab Eng; 2015 Sep; 31():13-21. PubMed ID: 26141150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial genome engineering using CRISPR-associated transposases.
    Gelsinger DR; Vo PLH; Klompe SE; Ronda C; Wang HH; Sternberg SH
    Nat Protoc; 2024 Mar; 19(3):752-790. PubMed ID: 38216671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering.
    Shukal S; Lim XH; Zhang C; Chen X
    Microb Cell Fact; 2022 Feb; 21(1):19. PubMed ID: 35123478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 8. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae.
    Deaner M; Alper HS
    FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31665284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compact Cascade-Cas3 system for targeted genome engineering.
    Csörgő B; León LM; Chau-Ly IJ; Vasquez-Rifo A; Berry JD; Mahendra C; Crawford ED; Lewis JD; Bondy-Denomy J
    Nat Methods; 2020 Dec; 17(12):1183-1190. PubMed ID: 33077967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a.
    Liu W; Tang D; Wang H; Lian J; Huang L; Xu Z
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8911-8922. PubMed ID: 31583448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.
    Lowder LG; Zhang D; Baltes NJ; Paul JW; Tang X; Zheng X; Voytas DF; Hsieh TF; Zhang Y; Qi Y
    Plant Physiol; 2015 Oct; 169(2):971-85. PubMed ID: 26297141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli.
    Hashemi A
    World J Microbiol Biotechnol; 2020 Jun; 36(7):96. PubMed ID: 32583135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli.
    Noda S; Mori Y; Oyama S; Kondo A; Araki M; Shirai T
    Microb Cell Fact; 2019 Jul; 18(1):124. PubMed ID: 31319852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR Mediated Genome Engineering and its Application in Industry.
    Kaboli S; Babazada H
    Curr Issues Mol Biol; 2018; 26():81-92. PubMed ID: 28879858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Industrial Biotechnology Using CRISPR-Cas Systems.
    Donohoue PD; Barrangou R; May AP
    Trends Biotechnol; 2018 Feb; 36(2):134-146. PubMed ID: 28778606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas12a-Assisted Recombineering in Bacteria.
    Yan MY; Yan HQ; Ren GX; Zhao JP; Guo XP; Sun YC
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28646112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing.
    Tong Y; Jørgensen TS; Whitford CM; Weber T; Lee SY
    Nat Commun; 2021 Sep; 12(1):5206. PubMed ID: 34471126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.