These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27072595)

  • 1. Tunable magnetic nanowires for biomedical and harsh environment applications.
    Ivanov YP; Alfadhel A; Alnassar M; Perez JE; Vazquez M; Chuvilin A; Kosel J
    Sci Rep; 2016 Apr; 6():24189. PubMed ID: 27072595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-shell structure dependent reactivity of Fe@Fe₂O₃ nanowires on aerobic degradation of 4-chlorophenol.
    Ai Z; Gao Z; Zhang L; He W; Yin JJ
    Environ Sci Technol; 2013 May; 47(10):5344-52. PubMed ID: 23618059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth Mechanism and Electrical and Magnetic Properties of Ag-Fe₃O₄ Core-Shell Nanowires.
    Ma J; Wang K; Zhan M
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16027-39. PubMed ID: 26151331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High quality self-assembly magnetite (Fe(3)O(4)) chain-like core-shell nanowires with luminescence synthesized by a facile one-pot hydrothermal process.
    Gong J; Li S; Zhang D; Zhang X; Liu C; Tong Z
    Chem Commun (Camb); 2010 May; 46(20):3514-6. PubMed ID: 20376393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles.
    Shi J; Ai Z; Zhang L
    Water Res; 2014 Aug; 59():145-53. PubMed ID: 24793112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles.
    Krajewski M; Brzozka K; Lin WS; Lin HM; Tokarczyk M; Borysiuk J; Kowalski G; Wasik D
    Phys Chem Chem Phys; 2016 Feb; 18(5):3900-9. PubMed ID: 26766540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo study for the growth of alpha-Fe2O3 nanowires synthesized by thermal oxidation of iron.
    Dong Z; Kashkarov P; Zhang H
    Nanoscale; 2010 Apr; 2(4):524-8. PubMed ID: 20644754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically conductive magnetic nanowires using an electrochemical DNA-templating route.
    Watson SM; Mohamed HD; Horrocks BR; Houlton A
    Nanoscale; 2013 Jun; 5(12):5349-59. PubMed ID: 23649009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisegmented FeCo/Cu nanowires: electrosynthesis, characterization, and magnetic control of biomolecule desorption.
    Özkale B; Shamsudhin N; Chatzipirpiridis G; Hoop M; Gramm F; Chen X; Martí X; Sort J; Pellicer E; Pané S
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7389-96. PubMed ID: 25776274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-Based Core-Shell Nanowires for Combinatorial Drug Delivery and Photothermal and Magnetic Therapy.
    Martínez-Banderas AI; Aires A; Quintanilla M; Holguín-Lerma JA; Lozano-Pedraza C; Teran FJ; Moreno JA; Perez JE; Ooi BS; Ravasi T; Merzaban JS; Cortajarena AL; Kosel J
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):43976-43988. PubMed ID: 31682404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires.
    Londoño-Calderón CL; Moscoso-Londoño O; Muraca D; Arzuza L; Carvalho P; Pirota KR; Knobel M; Pampillo LG; Martínez-García R
    Nanotechnology; 2017 Jun; 28(24):245605. PubMed ID: 28452330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-temperature ferromagnetic Cr-doped Ge/GeO
    Katkar AS; Gupta SP; Seikh MM; Chen LJ; Walke PS
    Nanotechnology; 2018 Jun; 29(23):235705. PubMed ID: 29553477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature coprecipitation synthesis and luminescent properties of LaPO(4):Ln(3+) (Ln(3+) = Ce(3+), Tb(3+)) nanowires and LaPO(4):Ce(3+),Tb(3+)/LaPO(4) core/shell nanowires.
    Yang M; You H; Liu K; Zheng Y; Guo N; Zhang H
    Inorg Chem; 2010 Jun; 49(11):4996-5002. PubMed ID: 20462235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method.
    Hosono E; Wang Y; Kida N; Enomoto M; Kojima N; Okubo M; Matsuda H; Saito Y; Kudo T; Honma I; Zhou H
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):212-8. PubMed ID: 20356237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis and enhanced luminescent properties of ZnO/HfO2 core-shell nanowires.
    Zhang Y; Lu HL; Wang T; Ren QH; Gu YZ; Li DH; Zhang DW
    Nanoscale; 2015 Oct; 7(37):15462-8. PubMed ID: 26339774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From GaN to ZnGa(2)O(4) through a low-temperature process: nanotube and heterostructure arrays.
    Lu MY; Zhou X; Chiu CY; Crawford S; Gradečak S
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):882-7. PubMed ID: 24354279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-State Limited Nucleation of NiSi/SiC Core-Shell Nanowires by Hot-Wire Chemical Vapor Deposition.
    Alizadeh M; Binti Hamzan N; Ooi PC; Bin Omar MF; Dee CF; Goh BT
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30813502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confined iron nanowires enhance the catalytic activity of carbon nanotubes in the aerobic oxidation of cyclohexane.
    Yang X; Yu H; Peng F; Wang H
    ChemSusChem; 2012 Jul; 5(7):1213-7. PubMed ID: 22488987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core-Shell Nanowires for Flexible Electronics.
    Zhang B; Li W; Jiu J; Yang Y; Jing J; Suganuma K; Li CF
    Inorg Chem; 2019 Mar; 58(5):3374-3381. PubMed ID: 30789711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting.
    Hsu YK; Chen YC; Lin YG
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14157-62. PubMed ID: 26053274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.