These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27072914)

  • 1. Facile Green Synthesis of BCN Nanosheets as High-Performance Electrode Material for Electrochemical Energy Storage.
    Karbhal I; Devarapalli RR; Debgupta J; Pillai VK; Ajayan PM; Shelke MV
    Chemistry; 2016 May; 22(21):7134-40. PubMed ID: 27072914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct growth of CuCo
    Xu W; Lu J; Huo W; Li J; Wang X; Zhang C; Gu X; Hu C
    Nanoscale; 2018 Aug; 10(29):14304-14313. PubMed ID: 30015818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode.
    Yang J; Ma Z; Gao W; Wei M
    Chemistry; 2017 Jan; 23(3):631-636. PubMed ID: 27785880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-Situ Synergistic 2D/2D MXene/BCN Heterostructure for Superlative Energy Density Supercapacitor with Super-Long Life.
    Nasrin K; Sudharshan V; Subramani K; Karnan M; Sathish M
    Small; 2022 Jan; 18(4):e2106051. PubMed ID: 34837477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loading of AgNPs onto the surface of boron nitride nanosheets for determination of scopoletin in Atractylodes macrocephala.
    Yue Y; Zeng L; Wang X; Su L; Sun M; Wu B; Yan S
    Sci Rep; 2019 Mar; 9(1):3864. PubMed ID: 30846798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors.
    Li L; Li R; Gai S; Ding S; He F; Zhang M; Yang P
    Chemistry; 2015 May; 21(19):7119-26. PubMed ID: 25801647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.
    Wang H; Xu Z; Kohandehghan A; Li Z; Cui K; Tan X; Stephenson TJ; King'ondu CK; Holt CM; Olsen BC; Tak JK; Harfield D; Anyia AO; Mitlin D
    ACS Nano; 2013 Jun; 7(6):5131-41. PubMed ID: 23651213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile preparation of silicon hollow spheres and their use in electrochemical capacitive energy storage.
    Liu MP; Li CH; Du HB; You XZ
    Chem Commun (Camb); 2012 May; 48(41):4950-2. PubMed ID: 22297483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A green approach to the synthesis of graphene nanosheets.
    Guo HL; Wang XF; Qian QY; Wang FB; Xia XH
    ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Assembly of 3D-BCN Microspheres as a Microsupercapacitor Electrode for Wearable Energy Storage.
    Tu D; Wu Z; Xu J; Zhou Y; Yang W; Yang Y; Zha X; Shi L
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47416-47424. PubMed ID: 32972139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step synthesis of free-standing α-Ni(OH)₂ nanosheets on reduced graphene oxide for high-performance supercapacitors.
    Dong B; Zhou H; Liang J; Zhang L; Gao G; Ding S
    Nanotechnology; 2014 Oct; 25(43):435403. PubMed ID: 25299341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage.
    Huang CH; Zhang Q; Chou TC; Chen CM; Su DS; Doong RA
    ChemSusChem; 2012 Mar; 5(3):563-71. PubMed ID: 22383382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity.
    Sassin MB; Hoag CP; Willis BT; Kucko NW; Rolison DR; Long JW
    Nanoscale; 2013 Feb; 5(4):1649-57. PubMed ID: 23334529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.
    Tan Y; Xu C; Chen G; Liu Z; Ma M; Xie Q; Zheng N; Yao S
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2241-8. PubMed ID: 23425031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation.
    Xu M; Fujita D; Chen H; Hanagata N
    Nanoscale; 2011 Jul; 3(7):2854-8. PubMed ID: 21611645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of ultra-thin hexagonal boron nitride nanoplates for cancer cell imaging and neurotransmitter sensing.
    Nurunnabi M; Nafiujjaman M; Lee SJ; Park IK; Huh KM; Lee YK
    Chem Commun (Camb); 2016 Apr; 52(36):6146-9. PubMed ID: 27074347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-power lithium-ion capacitor using LiMnBO3 -nanobead anode and polyaniline-nanofiber cathode with excellent cycle life.
    Karthikeyan K; Amaresh S; Lee SN; An JY; Lee YS
    ChemSusChem; 2014 Aug; 7(8):2310-6. PubMed ID: 24920598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries.
    Chen LB; Yin XM; Mei L; Li CC; Lei DN; Zhang M; Li QH; Xu Z; Xu CM; Wang TH
    Nanotechnology; 2012 Jan; 23(3):035402. PubMed ID: 22173372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors.
    Xie K; Li J; Lai Y; Zhang Z; Liu Y; Zhang G; Huang H
    Nanoscale; 2011 May; 3(5):2202-7. PubMed ID: 21455534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.
    Liu C; Wang J; Li J; Luo R; Shen J; Sun X; Han W; Wang L
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18609-17. PubMed ID: 26243663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.