These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 27073192)
1. A Quantitative Spectrophotometric Assay to Monitor the tRNA-Dependent Pathway for Lipid Aminoacylation In Vitro. Grube CD; Roy H J Biomol Screen; 2016 Aug; 21(7):722-8. PubMed ID: 27073192 [TBL] [Abstract][Full Text] [Related]
2. A continuous assay for monitoring the synthetic and proofreading activities of multiple aminoacyl-tRNA synthetases for high-throughput drug discovery. Grube CD; Roy H RNA Biol; 2018; 15(4-5):659-666. PubMed ID: 29168435 [TBL] [Abstract][Full Text] [Related]
3. A new set of assays for the discovery of aminoacyl-tRNA synthetase inhibitors. Saint-Léger A; Ribas de Pouplana L Methods; 2017 Jan; 113():34-45. PubMed ID: 27989759 [TBL] [Abstract][Full Text] [Related]
4. High-Throughput Screening for Protein Synthesis Inhibitors Targeting Aminoacyl-tRNA Synthetases. Kong J; Fang P; Madoux F; Spicer TP; Scampavia L; Kim S; Guo M SLAS Discov; 2018 Feb; 23(2):174-182. PubMed ID: 29020503 [TBL] [Abstract][Full Text] [Related]
5. Noncanonical inputs and outputs of tRNA aminoacylation. Hemmerle M; Wendenbaum M; Grob G; Yakobov N; Mahmoudi N; Senger B; Debard S; Fischer F; Becker HD Enzymes; 2020; 48():117-147. PubMed ID: 33837702 [TBL] [Abstract][Full Text] [Related]
6. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds. Jakubowski H; Pawelkiewicz J Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427 [TBL] [Abstract][Full Text] [Related]
7. Structures of two bacterial resistance factors mediating tRNA-dependent aminoacylation of phosphatidylglycerol with lysine or alanine. Hebecker S; Krausze J; Hasenkampf T; Schneider J; Groenewold M; Reichelt J; Jahn D; Heinz DW; Moser J Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10691-6. PubMed ID: 26261323 [TBL] [Abstract][Full Text] [Related]
8. Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. Rajendran V; Kalita P; Shukla H; Kumar A; Tripathi T Int J Biol Macromol; 2018 May; 111():400-414. PubMed ID: 29305884 [TBL] [Abstract][Full Text] [Related]
9. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon. Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993 [TBL] [Abstract][Full Text] [Related]
10. 5'-(N-aminoacyl)-sulfonamido-5'-deoxyadenosine: attempts for a stable alternative for aminoacyl-sulfamoyl adenosines as aaRS inhibitors. Gadakh B; Smaers S; Rozenski J; Froeyen M; Van Aerschot A Eur J Med Chem; 2015 Mar; 93():227-36. PubMed ID: 25686591 [TBL] [Abstract][Full Text] [Related]
11. Aminoacyl-tRNA synthetase (AARS) as an attractive drug target in neglected tropical trypanosomatid diseases-Leishmaniasis, Human African Trypanosomiasis and Chagas disease. Kushwaha V; Capalash N Mol Biochem Parasitol; 2022 Sep; 251():111510. PubMed ID: 35988745 [TBL] [Abstract][Full Text] [Related]
12. tRNA-dependent alanylation of diacylglycerol and phosphatidylglycerol in Corynebacterium glutamicum. Smith AM; Harrison JS; Grube CD; Sheppe AE; Sahara N; Ishii R; Nureki O; Roy H Mol Microbiol; 2015 Nov; 98(4):681-93. PubMed ID: 26235234 [TBL] [Abstract][Full Text] [Related]
13. Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution. Buechter DD; Schimmel P Crit Rev Biochem Mol Biol; 1993; 28(4):309-22. PubMed ID: 7691478 [TBL] [Abstract][Full Text] [Related]
14. [tRNA-dependent editing of errors by prolyl-tRNA synthetase from bacteria Enterococcus faecalis]. Boiarshin KS; Kriklivyĭ IA; Tukalo MA Ukr Biokhim Zh (1999); 2008; 80(6):52-9. PubMed ID: 19351057 [TBL] [Abstract][Full Text] [Related]
15. A homogeneous method to measure aminoacyl-tRNA synthetase aminoacylation activity using scintillation proximity assay technology. Macarrón R; Mensah L; Cid C; Carranza C; Benson N; Pope AJ; Díez E Anal Biochem; 2000 Sep; 284(2):183-90. PubMed ID: 10964400 [TBL] [Abstract][Full Text] [Related]
16. A Label-Free Assay for Aminoacylation of tRNA. Gamper H; Hou YM Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33036365 [TBL] [Abstract][Full Text] [Related]
17. A streamlined process for discovery and characterization of inhibitors against phenylalanyl-tRNA synthetase of Mycobacterium tuberculosis. Wang H; Chen S Methods Enzymol; 2023; 679():275-293. PubMed ID: 36682865 [TBL] [Abstract][Full Text] [Related]
18. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity. Zhang CM; Hou YM Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062 [TBL] [Abstract][Full Text] [Related]
19. Drugging tRNA aminoacylation. Ho JM; Bakkalbasi E; Söll D; Miller CA RNA Biol; 2018; 15(4-5):667-677. PubMed ID: 29345185 [TBL] [Abstract][Full Text] [Related]
20. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Pang L; Weeks SD; Van Aerschot A Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33578647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]