BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27073230)

  • 21. Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats.
    Wenzel HJ; Woolley CS; Robbins CA; Schwartzkroin PA
    Hippocampus; 2000; 10(3):244-60. PubMed ID: 10902894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures.
    Bender RA; Dubé C; Gonzalez-Vega R; Mina EW; Baram TZ
    Hippocampus; 2003; 13(3):399-412. PubMed ID: 12722980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The synaptic remodeling between regenerated perforant pathway and granule cells in slice culture.
    Yu DM; Tang WC; Wu P; Deng TX; Liu B; Li MS; Deng JB
    Cell Mol Neurobiol; 2010 Mar; 30(2):309-16. PubMed ID: 19757022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMDA receptor-dependent plasticity of granule cell spiking in the dentate gyrus of normal and epileptic rats.
    Lynch M; Sayin U; Golarai G; Sutula T
    J Neurophysiol; 2000 Dec; 84(6):2868-79. PubMed ID: 11110816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered morphology of hippocampal dentate granule cell presynaptic and postsynaptic terminals following conditional deletion of TrkB.
    Danzer SC; Kotloski RJ; Walter C; Hughes M; McNamara JO
    Hippocampus; 2008; 18(7):668-78. PubMed ID: 18398849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy.
    Zhang W; Yamawaki R; Wen X; Uhl J; Diaz J; Prince DA; Buckmaster PS
    J Neurosci; 2009 Nov; 29(45):14247-56. PubMed ID: 19906972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hippocampal injury, atrophy, synaptic reorganization, and epileptogenesis after perforant pathway stimulation-induced status epilepticus in the mouse.
    Kienzler F; Norwood BA; Sloviter RS
    J Comp Neurol; 2009 Jul; 515(2):181-96. PubMed ID: 19412934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered Synaptic Drive onto Birthdated Dentate Granule Cells in Experimental Temporal Lobe Epilepsy.
    Althaus AL; Moore SJ; Zhang H; Du X; Murphy GG; Parent JM
    J Neurosci; 2019 Sep; 39(38):7604-7614. PubMed ID: 31270158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic kainate receptors in interplay with INaP shift the sparse firing of dentate granule cells to a sustained rhythmic mode in temporal lobe epilepsy.
    Artinian J; Peret A; Marti G; Epsztein J; Crépel V
    J Neurosci; 2011 Jul; 31(30):10811-8. PubMed ID: 21795533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses.
    Hauss-Wegrzyniak B; Lynch MA; Vraniak PD; Wenk GL
    Exp Neurol; 2002 Aug; 176(2):336-41. PubMed ID: 12359175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CA3 axonal sprouting in kainate-induced chronic epilepsy.
    Siddiqui AH; Joseph SA
    Brain Res; 2005 Dec; 1066(1-2):129-46. PubMed ID: 16359649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rabies tracing of birthdated dentate granule cells in rat temporal lobe epilepsy.
    Du X; Zhang H; Parent JM
    Ann Neurol; 2017 Jun; 81(6):790-803. PubMed ID: 28470680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scavenging Tumor Necrosis Factor α Does Not Affect Inhibition of Dentate Granule Cells Following In Vitro Entorhinal Cortex Lesion.
    Kleidonas D; Vlachos A
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defective synaptic transmission and structure in the dentate gyrus and selective fear memory impairment in the Rsk2 mutant mouse model of Coffin-Lowry syndrome.
    Morice E; Farley S; Poirier R; Dallerac G; Chagneau C; Pannetier S; Hanauer A; Davis S; Vaillend C; Laroche S
    Neurobiol Dis; 2013 Oct; 58():156-68. PubMed ID: 23742761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamate receptor activation in the kindled dentate gyrus.
    Behr J; Heinemann U; Mody I
    Epilepsia; 2000; 41 Suppl 6():S100-3. PubMed ID: 10999529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy.
    Kobayashi M; Wen X; Buckmaster PS
    J Neurosci; 2003 Sep; 23(24):8471-9. PubMed ID: 13679415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex.
    Mikkonen M; Soininen H; Kälviänen R; Tapiola T; Ylinen A; Vapalahti M; Paljärvi L; Pitkänen A
    Ann Neurol; 1998 Dec; 44(6):923-34. PubMed ID: 9851437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kindling induces transient NMDA receptor-mediated facilitation of high-frequency input in the rat dentate gyrus.
    Behr J; Heinemann U; Mody I
    J Neurophysiol; 2001 May; 85(5):2195-202. PubMed ID: 11353034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMDA-receptor inhibition increases spine stability of denervated mouse dentate granule cells and accelerates spine density recovery following entorhinal denervation in vitro.
    Vlachos A; Helias M; Becker D; Diesmann M; Deller T
    Neurobiol Dis; 2013 Nov; 59():267-76. PubMed ID: 23932917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GABA bouton subpopulations in the human dentate gyrus are differentially altered in mesial temporal lobe epilepsy.
    Alhourani A; Fish KN; Wozny TA; Sudhakar V; Hamilton RL; Richardson RM
    J Neurophysiol; 2020 Jan; 123(1):392-406. PubMed ID: 31800363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.