BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 27073801)

  • 21. Irp2 Knockout Causes Osteoporosis by Inhibition of Bone Remodeling.
    Zhou Y; Yang Y; Liu Y; Chang H; Liu K; Zhang X; Chang Y
    Calcif Tissue Int; 2019 Jan; 104(1):70-78. PubMed ID: 30191282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of serum-derived exosomes of elderly patients with bone loss in failure of bone remodeling via alteration of exosomal bone-related proteins.
    Xie Y; Gao Y; Zhang L; Chen Y; Ge W; Tang P
    Aging Cell; 2018 Jun; 17(3):e12758. PubMed ID: 29603567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNAs in Bone Balance and Osteoporosis.
    Chen J; Qiu M; Dou C; Cao Z; Dong S
    Drug Dev Res; 2015 Aug; 76(5):235-45. PubMed ID: 26218893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases.
    Zhai Y; Tyagi SC; Tyagi N
    Biomed Pharmacother; 2017 Aug; 92():1073-1084. PubMed ID: 28618652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracellular Vesicles: Potential Mediators of Psychosocial Stress Contribution to Osteoporosis?
    He Y; Wuertz-Kozak K; Kuehl LK; Wippert PM
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis.
    Zhao W; Shen G; Ren H; Liang D; Yu X; Zhang Z; Huang J; Qiu T; Tang J; Shang Q; Yu P; Wu Z; Jiang X
    J Cell Physiol; 2018 Dec; 233(12):9191-9208. PubMed ID: 30078225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accentuated ovariectomy-induced bone loss and altered osteogenesis in heterozygous N-cadherin null mice.
    Lai CF; Cheng SL; Mbalaviele G; Donsante C; Watkins M; Radice GL; Civitelli R
    J Bone Miner Res; 2006 Dec; 21(12):1897-906. PubMed ID: 17002573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupling factors and exosomal packaging microRNAs involved in the regulation of bone remodelling.
    Zhu S; Yao F; Qiu H; Zhang G; Xu H; Xu J
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):469-480. PubMed ID: 28795526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. miR‑144 promotes the proliferation and differentiation of bone mesenchymal stem cells by downregulating the expression of SFRP1.
    Tang L; Lu W; Huang J; Tang X; Zhang H; Liu S
    Mol Med Rep; 2019 Jul; 20(1):270-280. PubMed ID: 31115543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MicroRNA biogenesis and regulation of bone remodeling.
    Kapinas K; Delany AM
    Arthritis Res Ther; 2011 May; 13(3):220. PubMed ID: 21635717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MURF1 deficiency suppresses unloading-induced effects on osteoblasts and osteoclasts to lead to bone loss.
    Kondo H; Ezura Y; Nakamoto T; Hayata T; Notomi T; Sorimachi H; Takeda S; Noda M
    J Cell Biochem; 2011 Dec; 112(12):3525-30. PubMed ID: 21866567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Role of genetic factors in the development of osteoporosis].
    Pishel' IM; Pashynian LN; Butenko HM
    Fiziol Zh (1994); 2005; 51(1):99-108. PubMed ID: 15801207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Notch signaling and bone remodeling.
    Regan J; Long F
    Curr Osteoporos Rep; 2013 Jun; 11(2):126-9. PubMed ID: 23519781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteoporosis from the point of view of the clinical endocrinologist.
    Szũcs J
    Agents Actions; 1994 Mar; 41(1-2):80-3. PubMed ID: 8079825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic Regulation of Skeletal Tissue Integrity and Osteoporosis Development.
    Chen YS; Lian WS; Kuo CW; Ke HJ; Wang SY; Kuo PC; Jahr H; Wang FS
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Bone remodeling and modeling/mini-modeling.].
    Hasegawa T; Amizuka N
    Clin Calcium; 2017; 27(12):1713-1722. PubMed ID: 29179165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of epigenetic modifications on bone remodeling in age-related osteoporosis.
    Yu W; Wang HL; Zhang J; Yin C
    Connect Tissue Res; 2023 Mar; 64(2):105-116. PubMed ID: 36271658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation.
    Li B; Boast S; de los Santos K; Schieren I; Quiroz M; Teitelbaum SL; Tondravi MM; Goff SP
    Nat Genet; 2000 Mar; 24(3):304-8. PubMed ID: 10700189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone matrix, cellularity, and structural changes in a rat model with high-turnover osteoporosis induced by combined ovariectomy and a multiple-deficient diet.
    Govindarajan P; Böcker W; El Khassawna T; Kampschulte M; Schlewitz G; Huerter B; Sommer U; Dürselen L; Ignatius A; Bauer N; Szalay G; Wenisch S; Lips KS; Schnettler R; Langheinrich A; Heiss C
    Am J Pathol; 2014 Mar; 184(3):765-77. PubMed ID: 24384131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: Increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients.
    Lisignoli G; Piacentini A; Cristino S; Grassi F; Cavallo C; Cattini L; Tonnarelli B; Manferdini C; Facchini A
    J Cell Physiol; 2007 Mar; 210(3):798-806. PubMed ID: 17133360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.