These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27073917)

  • 1. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment--A Comparison with Terrestrial Laser Scanning Data.
    Marx S; Hämmerle M; Klonner C; Höfle B
    PLoS One; 2016; 11(4):e0152839. PubMed ID: 27073917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV).
    Zhang J; Basso B; Price RF; Putman G; Shuai G
    PLoS One; 2018; 13(4):e0195223. PubMed ID: 29677204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct derivation of maize plant and crop height from low-cost time-of-flight camera measurements.
    Hämmerle M; Höfle B
    Plant Methods; 2016; 12():50. PubMed ID: 27933095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maize yield prediction and condition monitoring at the sub-county scale in Kenya: synthesis of remote sensing information and crop modeling.
    Kipkulei HK; Bellingrath-Kimura SD; Lana M; Ghazaryan G; Baatz R; Matavel C; Boitt MK; Chisanga CB; Rotich B; Moreira RM; Sieber S
    Sci Rep; 2024 Jun; 14(1):14227. PubMed ID: 38902311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia.
    Madugundu R; Al-Gaadi KA; Tola E; Hassaballa AA; Kayad AG
    PLoS One; 2018; 13(2):e0192830. PubMed ID: 29432446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-based prediction of plant height and crown area of vegetable crops using LiDAR point cloud.
    J R; Nidamanuri RR
    Sci Rep; 2024 Jun; 14(1):14903. PubMed ID: 38942825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time.
    Parent B; Leclere M; Lacube S; Semenov MA; Welcker C; Martre P; Tardieu F
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10642-10647. PubMed ID: 30275304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot.
    Bengochea-Guevara JM; Conesa-Muñoz J; Andújar D; Ribeiro A
    Sensors (Basel); 2016 Feb; 16(3):276. PubMed ID: 26927102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Review of crop residue fractional cover monitoring with remote sensing].
    Zhang M; Li QZ; Meng JH; Wu BF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Dec; 31(12):3200-5. PubMed ID: 22295759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature-based agricultural solutions: Scaling perennial grains across Africa.
    Peter BG; Mungai LM; Messina JP; Snapp SS
    Environ Res; 2017 Nov; 159():283-290. PubMed ID: 28825982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.
    Liu X; Wang S; Xue H; Singh VP
    PLoS One; 2015; 10(10):e0139839. PubMed ID: 26439928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical impacts of climate-smart agriculture in the Midwest United States.
    Bagley JE; Miller J; Bernacchi CJ
    Plant Cell Environ; 2015 Sep; 38(9):1913-30. PubMed ID: 25393245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate variation explains a third of global crop yield variability.
    Ray DK; Gerber JS; MacDonald GK; West PC
    Nat Commun; 2015 Jan; 6():5989. PubMed ID: 25609225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches.
    Estes LD; Beukes H; Bradley BA; Debats SR; Oppenheimer M; Ruane AC; Schulze R; Tadross M
    Glob Chang Biol; 2013 Dec; 19(12):3762-74. PubMed ID: 23864352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.
    Duncan JM; Dash J; Atkinson PM
    Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.
    Sun B; Jia S; Zhang S; McLaughlin NB; Liang A; Chen X; Liu S; Zhang X
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6472-82. PubMed ID: 26631020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comment on "Climate and management contributions to recent trends in U.S. agricultural yields".
    Gu L
    Science; 2003 Jun; 300(5625):1505; author reply 1505. PubMed ID: 12791966
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.