These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27074531)

  • 21. Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change.
    Klein D; Wolf C; Schulz C; Weber-Blaschke G
    Sci Total Environ; 2016 Jan; 539():45-60. PubMed ID: 26352646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward a more comprehensive greenhouse gas emissions assessment of biofuels: the case of forest-based fischer-tropsch diesel production in Finland.
    Soimakallio S
    Environ Sci Technol; 2014; 48(5):3031-8. PubMed ID: 24528291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative emissions from stopping deforestation and forest degradation, globally.
    Houghton RA; Nassikas AA
    Glob Chang Biol; 2018 Jan; 24(1):350-359. PubMed ID: 28833909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the implications of the EU-LULUCF regulation for the wood supply from EU forests to the EU.
    Nabuurs GJ; Arets EJMM; Schelhaas MJ
    Carbon Balance Manag; 2018 Oct; 13(1):18. PubMed ID: 30328011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.
    Röder M; Thornley P
    Waste Manag; 2018 Apr; 74():241-252. PubMed ID: 29203077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Public perceptions about climate change mitigation in British Columbia's forest sector.
    Peterson St-Laurent G; Hagerman S; Kozak R; Hoberg G
    PLoS One; 2018; 13(4):e0195999. PubMed ID: 29684041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Is enhanced biodiversity protection conflicting with ambitious bioenergy targets in eastern Finland?
    den Herder M; Kurttila M; Leskinen P; Lindner M; Haatanen A; Sironen S; Salminen O; Juusti V; Holma A
    J Environ Manage; 2017 Feb; 187():54-62. PubMed ID: 27883939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can Forest Management Practices Counteract Species Loss Arising from Increasing European Demand for Forest Biomass under Climate Mitigation Scenarios?
    Rosa F; Di Fulvio F; Lauri P; Felton A; Forsell N; Pfister S; Hellweg S
    Environ Sci Technol; 2023 Feb; 57(5):2149-2161. PubMed ID: 36706339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GHG displacement factors of harvested wood products: the myth of substitution.
    Leturcq P
    Sci Rep; 2020 Nov; 10(1):20752. PubMed ID: 33247216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in perspective needed to forge 'no-regret' forest-based climate change mitigation strategies.
    Erb KH; Haberl H; Le Noë J; Tappeiner U; Tasser E; Gingrich S
    Glob Change Biol Bioenergy; 2022 Mar; 14(3):246-257. PubMed ID: 35909989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia, Canada.
    Xu Z; Smyth CE; Lemprière TC; Rampley GJ; Kurz WA
    Mitig Adapt Strateg Glob Chang; 2018; 23(2):257-290. PubMed ID: 30093831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trade-offs between forest carbon stocks and harvests in a steady state - A multi-criteria analysis.
    Pingoud K; Ekholm T; Sievänen R; Huuskonen S; Hynynen J
    J Environ Manage; 2018 Mar; 210():96-103. PubMed ID: 29331854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Forests, carbon and global climate.
    Malhi Y; Meir P; Brown S
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1567-91. PubMed ID: 12460485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulating effects of changing climate and CO(2) emissions on soil carbon pools at the Hubbard Brook experimental forest.
    Dib AE; Johnson CE; Driscoll CT; Fahey TJ; Hayhoe K
    Glob Chang Biol; 2014 May; 20(5):1643-56. PubMed ID: 24132912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the production of bio-energy from wood biomass. Italian case study.
    González-García S; Bacenetti J
    Sci Total Environ; 2019 Jan; 647():158-168. PubMed ID: 30077846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental effects of shifts in a regional heating mix through variations in the utilization of solid biofuels.
    Wolf C; Klein D; Richter K; Weber-Blaschke G
    J Environ Manage; 2016 Jul; 177():177-91. PubMed ID: 27100330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon costs and benefits of France's biomass energy production targets.
    Valade A; Luyssaert S; Vallet P; Njakou Djomo S; Jesus Van Der Kellen I; Bellassen V
    Carbon Balance Manag; 2018 Dec; 13(1):26. PubMed ID: 30547241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inward- versus outward-focused bioeconomy strategies for British Columbia's forest products industry: a harvested wood products carbon storage and emission perspective.
    Xie SH; Kurz WA; McFarlane PN
    Carbon Balance Manag; 2021 Sep; 16(1):30. PubMed ID: 34562161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the fate of nutrients and carbon in the bioenergy chain through the modeling of biomass growth and conversion.
    François J; Fortin M; Patisson F; Dufour A
    Environ Sci Technol; 2014 Dec; 48(23):14007-15. PubMed ID: 25372499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon Balance and Contribution of Harvested Wood Products in China Based on the Production Approach of the Intergovernmental Panel on Climate Change.
    Ji C; Cao W; Chen Y; Yang H
    Int J Environ Res Public Health; 2016 Nov; 13(11):. PubMed ID: 27845760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.