BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 27074617)

  • 21. Plant lipids: Key players of plasma membrane organization and function.
    Mamode Cassim A; Gouguet P; Gronnier J; Laurent N; Germain V; Grison M; Boutté Y; Gerbeau-Pissot P; Simon-Plas F; Mongrand S
    Prog Lipid Res; 2019 Jan; 73():1-27. PubMed ID: 30465788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipid-dependent surface transport of the proton pumping ATPase: a model to study plasma membrane biogenesis in yeast.
    Toulmay A; Schneiter R
    Biochimie; 2007 Feb; 89(2):249-54. PubMed ID: 16938383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arabidopsis TETRASPANIN8 mediates exosome secretion and glycosyl inositol phosphoceramide sorting and trafficking.
    Liu N; Hou L; Chen X; Bao J; Chen F; Cai W; Zhu H; Wang L; Chen X
    Plant Cell; 2024 Feb; 36(3):626-641. PubMed ID: 37950906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species.
    Carmona-Salazar L; Cahoon RE; Gasca-Pineda J; González-Solís A; Vera-Estrella R; Treviño V; Cahoon EB; Gavilanes-Ruiz M
    Plant Physiol; 2021 May; 186(1):624-639. PubMed ID: 33570616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Very long chain fatty acid and lipid signaling in the response of plants to pathogens.
    Raffaele S; Leger A; Roby D
    Plant Signal Behav; 2009 Feb; 4(2):94-9. PubMed ID: 19649180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant sphingolipids: function follows form.
    Markham JE; Lynch DV; Napier JA; Dunn TM; Cahoon EB
    Curr Opin Plant Biol; 2013 Jun; 16(3):350-7. PubMed ID: 23499054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphatidylglucoside: a new marker for lipid rafts.
    Nagatsuka Y; Hirabayashi Y
    Biochim Biophys Acta; 2008 Mar; 1780(3):405-9. PubMed ID: 17933468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity.
    Denny PW; Goulding D; Ferguson MA; Smith DF
    Mol Microbiol; 2004 Apr; 52(2):313-27. PubMed ID: 15066023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of a GIPC glycosyltransferase gene, OsGMT1, suppresses plant immunity and delays heading time in rice.
    Lin Y; Zhu Y; Wang L; Zheng Y; Xie Y; Cai Q; He W; Xie H; Liu H; Wang Y; Cui L; Wei Y; Xie H; Zhang J
    Plant Sci; 2023 Jun; 331():111674. PubMed ID: 36948404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sphingolipids: membrane microdomains in brain development, function and neurological diseases.
    Olsen ASB; Færgeman NJ
    Open Biol; 2017 May; 7(5):. PubMed ID: 28566300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sphingolipids: modulators of HIV-1 infection and pathogenesis.
    Rawat SS; Johnson BT; Puri A
    Biosci Rep; 2005; 25(5-6):329-43. PubMed ID: 16307380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long acyl chain ceramides govern cholesterol and cytoskeleton dependence of membrane outer leaflet dynamics.
    Gupta A; Muralidharan S; Torta F; Wenk MR; Wohland T
    Biochim Biophys Acta Biomembr; 2020 Mar; 1862(3):183153. PubMed ID: 31857071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. C24 Sphingolipids Govern the Transbilayer Asymmetry of Cholesterol and Lateral Organization of Model and Live-Cell Plasma Membranes.
    Courtney KC; Pezeshkian W; Raghupathy R; Zhang C; Darbyson A; Ipsen JH; Ford DA; Khandelia H; Presley JF; Zha X
    Cell Rep; 2018 Jul; 24(4):1037-1049. PubMed ID: 30044971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The chemistry and biology of 6-hydroxyceramide, the youngest member of the human sphingolipid family.
    Kováčik A; Roh J; Vávrová K
    Chembiochem; 2014 Jul; 15(11):1555-62. PubMed ID: 24990520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces Plant Immune Responses and Reduces Cellulose Content in Arabidopsis.
    Fang L; Ishikawa T; Rennie EA; Murawska GM; Lao J; Yan J; Tsai AY; Baidoo EE; Xu J; Keasling JD; Demura T; Kawai-Yamada M; Scheller HV; Mortimer JC
    Plant Cell; 2016 Dec; 28(12):2991-3004. PubMed ID: 27895225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation of glycosylinositol phosphoceramide during plant tissue homogenization.
    Takai Y; Hasi RY; Matsumoto N; Fujita C; Ali H; Hayashi J; Kawakami R; Aihara M; Ishikawa T; Imai H; Wakida M; Ando K; Tanaka T
    J Biochem; 2023 Dec; 175(1):115-124. PubMed ID: 37827526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rafts: scale-dependent, active lipid organization at the cell surface.
    Mayor S; Rao M
    Traffic; 2004 Apr; 5(4):231-40. PubMed ID: 15030564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sphingolipid transport.
    Riboni L; Giussani P; Viani P
    Adv Exp Med Biol; 2010; 688():24-45. PubMed ID: 20919644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of Glycolipids in the Strain Chlorella pyrenoidosa.
    Yamashita S; Miyazawa T; Higuchi O; Takekoshi H; Miyazawa T; Kinoshita M
    J Nutr Sci Vitaminol (Tokyo); 2022; 68(4):353-357. PubMed ID: 36047108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.