These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27074854)

  • 1. Electrothermal flow on electrodes arrays at physiological conductivities.
    Koklu A; Tansel O; Oksuzoglu H; Sabuncu AC
    IET Nanobiotechnol; 2016 Apr; 10(2):54-61. PubMed ID: 27074854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation analysis of rectifying microfluidic mixing with field-effect-tunable electrothermal induced flow.
    Liu W; Ren Y; Tao Y; Yao B; Li Y
    Electrophoresis; 2018 Mar; 39(5-6):779-793. PubMed ID: 28873212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
    Ng WY; Goh S; Lam YC; Yang C; Rodríguez I
    Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced electrothermal pumping with thin film resistive heaters.
    Williams SJ
    Electrophoresis; 2013 May; 34(9-10):1400-8. PubMed ID: 23576002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of pumping mechanism for non-Newtonian blood flow with AC electrothermal forces in a microchannel by hybrid boundary element method and immersed boundary-lattice Boltzmann method.
    Ren Q
    Electrophoresis; 2018 Jun; 39(11):1329-1338. PubMed ID: 29427440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal design of microgrooved channels with electrokinetic pumping for lab-on-a-chip applications.
    Du E; Manoochehri S
    IET Nanobiotechnol; 2010 Jun; 4(2):40-9. PubMed ID: 20499997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AC electrothermal manipulation of conductive fluids and particles for lab-chip applications.
    Lian M; Islam N; Wu J
    IET Nanobiotechnol; 2007 Jun; 1(3):36-43. PubMed ID: 17506595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrothermal Fluid Manipulation of High-Conductivity Samples for Laboratory Automation Applications.
    Sin ML; Gau V; Liao JC; Wong PK
    JALA Charlottesv Va; 2010 Dec; 15(6):426-432. PubMed ID: 21180401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polycaprolactone-enabled sealing and carbon composite electrode integration into electrochemical microfluidics.
    Klunder KJ; Clark KM; McCord C; Berg KE; Minteer SD; Henry CS
    Lab Chip; 2019 Aug; 19(15):2589-2597. PubMed ID: 31250868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Railing Nanoparticles Along Activated Tracks Towards Continuous-Flow Electrokinetic Enrichment from Blood Plasma
    Kushigbor SDE; Tang Z; Yobas L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2249-2252. PubMed ID: 33018455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AC Electrothermal Circulatory Pumping Chip for Cell Culture.
    Lang Q; Wu Y; Ren Y; Tao Y; Lei L; Jiang H
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26792-801. PubMed ID: 26558750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrohydrodynamic-mediated dielectrophoretic separation and transport based on asymmetric electrode pairs.
    Du E; Manoochehri S
    Electrophoresis; 2008 Dec; 29(24):5017-25. PubMed ID: 19130586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications.
    Salari A; Navi M; Dalton C
    Biomicrofluidics; 2015 Jan; 9(1):014113. PubMed ID: 25713695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AC electrothermal enhancement of heterogeneous assays in microfluidics.
    Feldman HC; Sigurdson M; Meinhart CD
    Lab Chip; 2007 Nov; 7(11):1553-9. PubMed ID: 17960285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ; Green NG
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis.
    Naieni AK; Nojeh A
    Nanotechnology; 2012 Dec; 23(49):495606. PubMed ID: 23165429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.