These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27075607)

  • 1. Surface passivation of lead sulfide nanocrystals with low electron affinity metals: photoluminescence and photovoltaic performance.
    Tavakoli MM; Mirfasih MH; Hasanzadeh S; Aashuri H; Simchi A
    Phys Chem Chem Phys; 2016 Apr; 18(17):12086-92. PubMed ID: 27075607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of bond adaptability in the passivation of colloidal quantum dot solids.
    Thon SM; Ip AH; Voznyy O; Levina L; Kemp KW; Carey GH; Masala S; Sargent EH
    ACS Nano; 2013 Sep; 7(9):7680-8. PubMed ID: 23909748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Merging Passivation in Synthesis Enabling the Lowest Open-Circuit Voltage Loss for PbS Quantum Dot Solar Cells.
    Liu Y; Wu H; Shi G; Li Y; Gao Y; Fang S; Tang H; Chen W; Ma T; Khan I; Wang K; Wang C; Li X; Shen Q; Liu Z; Ma W
    Adv Mater; 2023 Feb; 35(5):e2207293. PubMed ID: 36380715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.
    Wang H; Wang Y; He B; Li W; Sulaman M; Xu J; Yang S; Tang Y; Zou B
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18526-33. PubMed ID: 27176547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
    Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells.
    Pradhan S; Stavrinadis A; Gupta S; Konstantatos G
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27390-27395. PubMed ID: 28787128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring charge carrier diffusion in coupled colloidal quantum dot solids.
    Zhitomirsky D; Voznyy O; Hoogland S; Sargent EH
    ACS Nano; 2013 Jun; 7(6):5282-90. PubMed ID: 23701285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density.
    Sun B; Vafaie M; Levina L; Wei M; Dong Y; Gao Y; Kung HT; Biondi M; Proppe AH; Chen B; Choi MJ; Sagar LK; Voznyy O; Kelley SO; Laquai F; Lu ZH; Hoogland S; GarcĂ­a de Arquer FP; Sargent EH
    Nano Lett; 2020 May; 20(5):3694-3702. PubMed ID: 32227970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals.
    Saha SK; Bera A; Pal AJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8886-93. PubMed ID: 25853277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells.
    Mahajan C; Sharma A; Rath AK
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells.
    Zhang J; Gao J; Miller EM; Luther JM; Beard MC
    ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression.
    Ip AH; Kiani A; Kramer IJ; Voznyy O; Movahed HF; Levina L; Adachi MM; Hoogland S; Sargent EH
    ACS Nano; 2015 Sep; 9(9):8833-42. PubMed ID: 26266671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.
    Tavakoli MM; Aashuri H; Simchi A; Fan Z
    Phys Chem Chem Phys; 2015 Oct; 17(37):24412-9. PubMed ID: 26339693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange.
    Aqoma H; Al Mubarok M; Hadmojo WT; Lee EH; Kim TW; Ahn TK; Oh SH; Jang SY
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28266746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics.
    Jeong KS; Tang J; Liu H; Kim J; Schaefer AW; Kemp K; Levina L; Wang X; Hoogland S; Debnath R; Brzozowski L; Sargent EH; Asbury JB
    ACS Nano; 2012 Jan; 6(1):89-99. PubMed ID: 22168594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency.
    Barkhouse DA; Pattantyus-Abraham AG; Levina L; Sargent EH
    ACS Nano; 2008 Nov; 2(11):2356-62. PubMed ID: 19206403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Modified Graphene Oxide/Lead Sulfide Hybrid Film-Forming Ink for High-Efficiency Bulk Nano-Heterojunction Colloidal Quantum Dot Solar Cells.
    Zhang Y; Wu G; Ding C; Liu F; Liu D; Masuda T; Yoshino K; Hayase S; Wang R; Shen Q
    Nanomicro Lett; 2020 May; 12(1):111. PubMed ID: 34138103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-based route to colloidal Mn-doped ZnSe and core/shell ZnSe/ZnS quantum dots.
    Aboulaich A; Geszke M; Balan L; Ghanbaja J; Medjahdi G; Schneider R
    Inorg Chem; 2010 Dec; 49(23):10940-8. PubMed ID: 21049903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Doping on the Optoelectronic Properties of PbS Colloidal Quantum Dot Solids.
    Papagiorgis P; Stavrinadis A; Othonos A; Konstantatos G; Itskos G
    Sci Rep; 2016 Jan; 6():18735. PubMed ID: 26743934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal quantum dot based solar cells: from materials to devices.
    Song JH; Jeong S
    Nano Converg; 2017; 4(1):21. PubMed ID: 28835877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.