BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27075959)

  • 1. Acetylene hydrogenation over structured Au-Pd catalysts.
    McCue AJ; Baker RT; Anderson JA
    Faraday Discuss; 2016 Jul; 188():499-523. PubMed ID: 27075959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Hydrogenation of Acetylene to Ethylene Over Nanosized Gold and Palladium Supported Catalysts.
    Lee G; Jeong WJ; Ahn HG
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5800-5803. PubMed ID: 32331184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One pot microwave synthesis of highly stable AuPd@Pd supported core-shell nanoparticles.
    Howe AGR; Miedziak PJ; Morgan DJ; He Q; Strasser P; Edwards JK
    Faraday Discuss; 2018 Sep; 208(0):409-425. PubMed ID: 29796569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness.
    Jones W; Su R; Wells PP; Shen Y; Dimitratos N; Bowker M; Morgan D; Iversen BB; Chutia A; Besenbacher F; Hutchings G
    Phys Chem Chem Phys; 2014 Dec; 16(48):26638-44. PubMed ID: 25363813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pd@C core-shell nanoparticles on carbon nanotubes as highly stable and selective catalysts for hydrogenation of acetylene to ethylene.
    Zhang L; Ding Y; Wu KH; Niu Y; Luo J; Yang X; Zhang B; Su D
    Nanoscale; 2017 Oct; 9(38):14317-14321. PubMed ID: 28944384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective hydrogenation of acetylene over egg-shell palladium nano-catalyst.
    Zhu QF; Gao J; Chen JF; Wen LX
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5641-7. PubMed ID: 21133085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, stability, electronic, magnetic, and catalytic properties of monometallic Pd, Au, and bimetallic Pd-Au core-shell nanoparticles.
    Wang Q; Lu X; Zhen Y; Li WQ; Chen GH; Yang Y
    J Chem Phys; 2018 Dec; 149(24):244307. PubMed ID: 30599716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DFT + U study of acetylene selective hydrogenation over anatase supported PdaAgb (a + b = 4) cluster.
    Meng LD; Wang GC
    Phys Chem Chem Phys; 2014 Sep; 16(33):17541-50. PubMed ID: 25026216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volcano-like behavior of Au-Pd core-shell nanoparticles in the selective oxidation of alcohols.
    Silva TA; Teixeira-Neto E; López N; Rossi LM
    Sci Rep; 2014 Jul; 4():5766. PubMed ID: 25042537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AuRu/AC as an effective catalyst for hydrogenation reactions.
    Villa A; Chan-Thaw CE; Campisi S; Bianchi CL; Wang D; Kotula PG; Kübel C; Prati L
    Phys Chem Chem Phys; 2015 Nov; 17(42):28171-6. PubMed ID: 25812621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic Au-Pd nanoparticles supported on silica with a tunable core@shell structure: enhanced catalytic activity of Pd(core)-Au(shell) over Au(core)-Pd(shell).
    Kalita GD; Sarmah PP; Kalita G; Das P
    Nanoscale Adv; 2021 Sep; 3(18):5399-5416. PubMed ID: 36132629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile route to model catalysts: the synthesis of Au@Pd core-shell nanoparticles on γ-Fe₂O₃ (0001).
    Davies RJ; Bowker M; Davies PR; Morgan DJ
    Nanoscale; 2013 Oct; 5(19):9018-22. PubMed ID: 23913196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications.
    Yang G; Chen D; Lv P; Kong X; Sun Y; Wang Z; Yuan Z; Liu H; Yang J
    Sci Rep; 2016 Oct; 6():35252. PubMed ID: 27734945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance supported catalysts with an ionic liquid layer for the selective hydrogenation of acetylene.
    Herrmann T; Rössmann L; Lucas M; Claus P
    Chem Commun (Camb); 2011 Dec; 47(45):12310-2. PubMed ID: 22008709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Bimetallic Electronic Synergy with Oxide Site Isolation Improves the Selective Hydrogenation of Acetylene.
    Liu F; Xia Y; Xu W; Cao L; Guan Q; Gu Q; Yang B; Lu J
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19324-19330. PubMed ID: 34184379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient NiCu@C/Al
    Zhou S; Lu C; Zhou W; Bi Y; Zhou C; Zeng A; Wang A; Tan L; Dong L
    Chem Commun (Camb); 2022 Oct; 58(81):11398-11401. PubMed ID: 36128916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles.
    Hosseinkhani B; Søbjerg LS; Rotaru AE; Emtiazi G; Skrydstrup T; Meyer RL
    Biotechnol Bioeng; 2012 Jan; 109(1):45-52. PubMed ID: 21830201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorption.
    Bugaev AL; Usoltsev OA; Lazzarini A; Lomachenko KA; Guda AA; Pellegrini R; Carosso M; Vitillo JG; Groppo E; van Bokhoven JA; Soldatov AV; Lamberti C
    Faraday Discuss; 2018 Sep; 208(0):187-205. PubMed ID: 29876557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pd Single-Atom Catalysts on Nitrogen-Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene.
    Zhou S; Shang L; Zhao Y; Shi R; Waterhouse GIN; Huang YC; Zheng L; Zhang T
    Adv Mater; 2019 May; 31(18):e1900509. PubMed ID: 30873691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.