These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27076305)

  • 1. Vaccinomics Approach to Tick Vaccine Development.
    Contreras M; Villar M; Alberdi P; de la Fuente J
    Methods Mol Biol; 2016; 1404():275-286. PubMed ID: 27076305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vaccinomics Approach to the Identification of Candidate Protective Antigens for the Control of Tick Vector Infestations and
    Contreras M; Alberdi P; Fernández De Mera IG; Krull C; Nijhof A; Villar M; De La Fuente J
    Front Cell Infect Microbiol; 2017; 7():360. PubMed ID: 28848718
    [No Abstract]   [Full Text] [Related]  

  • 3. Host Immunization with Recombinant Proteins to Screen Antigens for Tick Control.
    Galay RL; Miyata T; Umemiya-Shirafuji R; Mochizuki M; Fujisaki K; Tanaka T
    Methods Mol Biol; 2016; 1404():261-273. PubMed ID: 27076304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vaccinomics, the new road to tick vaccines.
    de la Fuente J; Merino O
    Vaccine; 2013 Dec; 31(50):5923-9. PubMed ID: 24396872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for new and improved vaccines against ticks and tick-borne diseases.
    de la Fuente J; Kopáček P; Lew-Tabor A; Maritz-Olivier C
    Parasite Immunol; 2016 Dec; 38(12):754-769. PubMed ID: 27203187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying proteomics to tick vaccine development: where are we?
    Villar M; Marina A; de la Fuente J
    Expert Rev Proteomics; 2017 Mar; 14(3):211-221. PubMed ID: 28099817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactomics and tick vaccine development: new directions for the control of tick-borne diseases.
    Artigas-Jerónimo S; De La Fuente J; Villar M
    Expert Rev Proteomics; 2018 Aug; 15(8):627-635. PubMed ID: 30067120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunization with recombinant subolesin does not reduce tick infection with tick-borne encephalitis virus nor protect mice against disease.
    Havlíková S; Ličková M; Ayllón N; Roller L; Kazimírová M; Slovák M; Moreno-Cid JA; Pérez de la Lastra JM; Klempa B; de la Fuente J
    Vaccine; 2013 Mar; 31(12):1582-9. PubMed ID: 23357197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tick vaccines and the control of tick-borne pathogens.
    Merino O; Alberdi P; Pérez de la Lastra JM; de la Fuente J
    Front Cell Infect Microbiol; 2013; 3():30. PubMed ID: 23847771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Vaccinomics Approach for the Identification of Tick Protective Antigens for the Control of
    Contreras M; Villar M; de la Fuente J
    Front Physiol; 2019; 10():977. PubMed ID: 31417430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the tick-pathogen interface for novel control strategies.
    de la Fuente J; Kocan KM; Almazan C; Blouin EF
    Front Biosci; 2008 May; 13():6947-56. PubMed ID: 18508707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection.
    Merino O; Antunes S; Mosqueda J; Moreno-Cid JA; Pérez de la Lastra JM; Rosario-Cruz R; Rodríguez S; Domingos A; de la Fuente J
    Vaccine; 2013 Dec; 31(49):5889-96. PubMed ID: 24084474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA interference screening in ticks for identification of protective antigens.
    de la Fuente J; Almazán C; Blouin EF; Naranjo V; Kocan KM
    Parasitol Res; 2005 Jun; 96(3):137-41. PubMed ID: 15824899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of infestations by Ixodes ricinus tick larvae in rabbits vaccinated with aquaporin recombinant antigens.
    Contreras M; de la Fuente J
    Vaccine; 2017 Mar; 35(9):1323-1328. PubMed ID: 28161419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission.
    de la Fuente J; Moreno-Cid JA; Canales M; Villar M; de la Lastra JM; Kocan KM; Galindo RC; Almazán C; Blouin EF
    Vet Parasitol; 2011 Sep; 181(1):17-22. PubMed ID: 21561715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention and control strategies for ticks and pathogen transmission.
    de La Fuente J; Kocan KM; Contreras M
    Rev Sci Tech; 2015 Apr; 34(1):249-64. PubMed ID: 26470461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tick vaccines: current status and future directions.
    de la Fuente J; Contreras M
    Expert Rev Vaccines; 2015; 14(10):1367-76. PubMed ID: 26289976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The intracellular bacterium Anaplasma phagocytophilum selectively manipulates the levels of vertebrate host proteins in the tick vector Ixodes scapularis.
    Villar M; López V; Ayllón N; Cabezas-Cruz A; López JA; Vázquez J; Alberdi P; de la Fuente J
    Parasit Vectors; 2016 Aug; 9(1):467. PubMed ID: 27561965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tick Bioactive Molecules as Novel Therapeutics: Beyond Vaccine Targets.
    Murfin KE; Fikrig E
    Front Cell Infect Microbiol; 2017; 7():222. PubMed ID: 28634573
    [No Abstract]   [Full Text] [Related]  

  • 20. Subolesin/Akirin vaccines for the control of arthropod vectors and vectorborne pathogens.
    de la Fuente J; Moreno-Cid JA; Galindo RC; Almazan C; Kocan KM; Merino O; Perez de la Lastra JM; Estrada-Peña A; Blouin EF
    Transbound Emerg Dis; 2013 Nov; 60 Suppl 2():172-8. PubMed ID: 24589118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.