These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 27076373)
1. In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery. Sun F; Markötter H; Zhou D; Alrwashdeh SS; Hilger A; Kardjilov N; Manke I; Banhart J ChemSusChem; 2016 May; 9(9):946-50. PubMed ID: 27076373 [TBL] [Abstract][Full Text] [Related]
2. Self-Assembled Framework Formed During Lithiation of SnS Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057 [TBL] [Abstract][Full Text] [Related]
3. Materials for rechargeable lithium-ion batteries. Hayner CM; Zhao X; Kung HH Annu Rev Chem Biomol Eng; 2012; 3():445-71. PubMed ID: 22524506 [TBL] [Abstract][Full Text] [Related]
4. In situ three-dimensional synchrotron X-Ray nanotomography of the (de)lithiation processes in tin anodes. Wang J; Chen-Wiegart YC; Wang J Angew Chem Int Ed Engl; 2014 Apr; 53(17):4460-4. PubMed ID: 24648150 [TBL] [Abstract][Full Text] [Related]
5. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Zhang N; Zhao Q; Han X; Yang J; Chen J Nanoscale; 2014 Mar; 6(5):2827-32. PubMed ID: 24468961 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries. Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017 [TBL] [Abstract][Full Text] [Related]
7. Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries. Chen P; Wu F; Wang Y ChemSusChem; 2014 May; 7(5):1407-14. PubMed ID: 24648261 [TBL] [Abstract][Full Text] [Related]
8. Towards an Understanding of Li Liu C; Brant WR; Younesi R; Dong Y; Edström K; Gustafsson T; Zhu J ChemSusChem; 2017 Apr; 10(7):1592-1599. PubMed ID: 28247542 [TBL] [Abstract][Full Text] [Related]
9. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Gu M; Parent LR; Mehdi BL; Unocic RR; McDowell MT; Sacci RL; Xu W; Connell JG; Xu P; Abellan P; Chen X; Zhang Y; Perea DE; Evans JE; Lauhon LJ; Zhang JG; Liu J; Browning ND; Cui Y; Arslan I; Wang CM Nano Lett; 2013; 13(12):6106-12. PubMed ID: 24224495 [TBL] [Abstract][Full Text] [Related]
10. Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries. Nithya C; Gopukumar S ChemSusChem; 2013 May; 6(5):898-904. PubMed ID: 23512863 [TBL] [Abstract][Full Text] [Related]
11. Phase evolution of tin nanocrystals in lithium ion batteries. Im HS; Cho YJ; Lim YR; Jung CS; Jang DM; Park J; Shojaei F; Kang HS ACS Nano; 2013 Dec; 7(12):11103-11. PubMed ID: 24195495 [TBL] [Abstract][Full Text] [Related]
12. Preparation of nano-sized graphite-supported CuO and Cu-Sn as active materials in lithium ion batteries. Jung DW; Jeong JH; Kong BS; Lee JK; Oh ES J Nanosci Nanotechnol; 2012 Apr; 12(4):3317-21. PubMed ID: 22849115 [TBL] [Abstract][Full Text] [Related]
13. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode. Shen L; Shen L; Wang Z; Chen L ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265 [TBL] [Abstract][Full Text] [Related]
14. In situ and Operando Tracking of Microstructure and Volume Evolution of Silicon Electrodes by using Synchrotron X-ray Imaging. Dong K; Markötter H; Sun F; Hilger A; Kardjilov N; Banhart J; Manke I ChemSusChem; 2019 Jan; 12(1):261-269. PubMed ID: 30296015 [TBL] [Abstract][Full Text] [Related]
15. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy. Su Q; Wang S; Yao L; Li H; Du G; Ye H; Fang Y Sci Rep; 2016 Jun; 6():28197. PubMed ID: 27306189 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensional Visualization of Gas Evolution and Channel Formation inside a Lithium-Ion Battery. Sun F; Markötter H; Manke I; Hilger A; Kardjilov N; Banhart J ACS Appl Mater Interfaces; 2016 Mar; 8(11):7156-64. PubMed ID: 26926360 [TBL] [Abstract][Full Text] [Related]
17. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Huang X; Cui S; Chang J; Hallac PB; Fell CR; Luo Y; Metz B; Jiang J; Hurley PT; Chen J Angew Chem Int Ed Engl; 2015 Jan; 54(5):1490-3. PubMed ID: 25504807 [TBL] [Abstract][Full Text] [Related]
18. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes. Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718 [TBL] [Abstract][Full Text] [Related]
19. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes. Klink S; Schuhmann W; La Mantia F ChemSusChem; 2014 Aug; 7(8):2159-66. PubMed ID: 24989450 [TBL] [Abstract][Full Text] [Related]
20. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. Misra S; Liu N; Nelson J; Hong SS; Cui Y; Toney MF ACS Nano; 2012 Jun; 6(6):5465-73. PubMed ID: 22558938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]