These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 27076397)

  • 1. Allocation of Absorbed Light Energy in Photosystem II in NPQ Mutants of Arabidopsis.
    Ikeuchi M; Sato F; Endo T
    Plant Cell Physiol; 2016 Jul; 57(7):1484-1494. PubMed ID: 27076397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis.
    Ciszak K; Kulasek M; Barczak A; Grzelak J; Maćkowski S; Karpiński S
    Plant Signal Behav; 2015; 10(1):e982018. PubMed ID: 25654166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants.
    Kohzuma K; Hikosaka K
    Biochem Biophys Res Commun; 2018 Mar; 498(1):52-57. PubMed ID: 29501490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions.
    Ikeuchi M; Uebayashi N; Sato F; Endo T
    Plant Cell Physiol; 2014 Jul; 55(7):1286-95. PubMed ID: 24850835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls.
    Bode S; Quentmeier CC; Liao PN; Hafi N; Barros T; Wilk L; Bittner F; Walla PJ
    Proc Natl Acad Sci U S A; 2009 Jul; 106(30):12311-6. PubMed ID: 19617542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP; Ruban AV
    Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach.
    Ruban AV; Murchie EH
    Biochim Biophys Acta; 2012 Jul; 1817(7):977-82. PubMed ID: 22503831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana.
    Sarvikas P; Hakala M; Pätsikkä E; Tyystjärvi T; Tyystjärvi E
    Plant Cell Physiol; 2006 Mar; 47(3):391-400. PubMed ID: 16415063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PsbS interactions involved in the activation of energy dissipation in Arabidopsis.
    Correa-Galvis V; Poschmann G; Melzer M; Stühler K; Jahns P
    Nat Plants; 2016 Feb; 2():15225. PubMed ID: 27249196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diurnal and developmental changes in energy allocation of absorbed light at PSII in field-grown rice.
    Ishida S; Uebayashi N; Tazoe Y; Ikeuchi M; Homma K; Sato F; Endo T
    Plant Cell Physiol; 2014 Jan; 55(1):171-82. PubMed ID: 24259682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoprotective mechanism of the non-target organism Arabidopsis thaliana to paraquat exposure.
    Moustaka J; Moustakas M
    Pestic Biochem Physiol; 2014 May; 111():1-6. PubMed ID: 24861926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian rhythms are associated with variation in photosystem II function and photoprotective mechanisms.
    Yarkhunova Y; Guadagno CR; Rubin MJ; Davis SJ; Ewers BE; Weinig C
    Plant Cell Environ; 2018 Nov; 41(11):2518-2529. PubMed ID: 29664141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameters of photosynthetic energy partitioning.
    Lazár D
    J Plant Physiol; 2015 Mar; 175():131-47. PubMed ID: 25569797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark.
    Miyake C; Amako K; Shiraishi N; Sugimoto T
    Plant Cell Physiol; 2009 Apr; 50(4):730-43. PubMed ID: 19251745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant.
    Dall'Osto L; Cazzaniga S; Wada M; Bassi R
    Philos Trans R Soc Lond B Biol Sci; 2014 Apr; 369(1640):20130221. PubMed ID: 24591708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relationship between non-photochemical quenching and photoprotection of Photosystem II.
    Lambrev PH; Miloslavina Y; Jahns P; Holzwarth AR
    Biochim Biophys Acta; 2012 May; 1817(5):760-9. PubMed ID: 22342615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic interplay between photodamage and photoprotection in photosystem II.
    Townsend AJ; Ware MA; Ruban AV
    Plant Cell Environ; 2018 May; 41(5):1098-1112. PubMed ID: 29210070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dynamics of Energy Dissipation and Xanthophyll Conversion in Arabidopsis Indicate an Indirect Photoprotective Role of Zeaxanthin in Slowly Inducible and Relaxing Components of Non-photochemical Quenching of Excitation Energy.
    Kress E; Jahns P
    Front Plant Sci; 2017; 8():2094. PubMed ID: 29276525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng.].
    Xu XZ; Zhang JY; Zhang GH; Long GQ; Yang SC; Chen ZJ; Wei FG; Chen JW
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):193-204. PubMed ID: 29692028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis.
    Cazzaniga S; Dall' Osto L; Kong SG; Wada M; Bassi R
    Plant J; 2013 Nov; 76(4):568-79. PubMed ID: 24033721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.