These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 27076397)
21. [Effects of NO3- stress on photosynthetic rate, photochemical efficiency of PS II and light energy allocation in cucumber seedling leaves]. Su XR; Wang XF; Yang FJ; Wei M Ying Yong Sheng Tai Xue Bao; 2007 Jul; 18(7):1441-6. PubMed ID: 17886632 [TBL] [Abstract][Full Text] [Related]
22. Investigation of OCP-triggered dissipation of excitation energy in PSI/PSII-less Synechocystis sp. PCC 6803 mutant using non-linear laser fluorimetry. Kuzminov FI; Karapetyan NV; Rakhimberdieva MG; Elanskaya IV; Gorbunov MY; Fadeev VV Biochim Biophys Acta; 2012 Jul; 1817(7):1012-21. PubMed ID: 22484220 [TBL] [Abstract][Full Text] [Related]
23. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Nilkens M; Kress E; Lambrev P; Miloslavina Y; Müller M; Holzwarth AR; Jahns P Biochim Biophys Acta; 2010 Apr; 1797(4):466-75. PubMed ID: 20067757 [TBL] [Abstract][Full Text] [Related]
24. CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves--relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Miyake C; Miyata M; Shinzaki Y; Tomizawa K Plant Cell Physiol; 2005 Apr; 46(4):629-37. PubMed ID: 15701657 [TBL] [Abstract][Full Text] [Related]
25. Discerning the effects of photoinhibition and photoprotection on the rate of oxygen evolution in Arabidopsis leaves. Giovagnetti V; Ruban AV J Photochem Photobiol B; 2015 Nov; 152(Pt B):272-8. PubMed ID: 26409576 [TBL] [Abstract][Full Text] [Related]
26. Rapidly reversible chlorophyll fluorescence quenching induced by pulses of supersaturating light in vivo. Schreiber U; Klughammer C; Schansker G Photosynth Res; 2019 Oct; 142(1):35-50. PubMed ID: 31090015 [TBL] [Abstract][Full Text] [Related]
27. Photosynthetic properties of an Arabidopsis thaliana mutant possessing a defective PsbS gene. Peterson RB; Havir EA Planta; 2001 Nov; 214(1):142-52. PubMed ID: 11762164 [TBL] [Abstract][Full Text] [Related]
28. Influence of ascorbate and the Mehler peroxidase reaction on non-photochemical quenching of chlorophyll fluorescence in maize mesophyll chloroplasts. Ivanov B; Edwards G Planta; 2000 Apr; 210(5):765-74. PubMed ID: 10805448 [TBL] [Abstract][Full Text] [Related]
29. Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana. Giovagnetti V; Ware MA; Ruban AV Photosynth Res; 2015 Aug; 125(1-2):179-89. PubMed ID: 25613087 [TBL] [Abstract][Full Text] [Related]
30. Light energy allocation at PSII under field light conditions: how much energy is lost in NPQ-associated dissipation? Endo T; Uebayashi N; Ishida S; Ikeuchi M; Sato F Plant Physiol Biochem; 2014 Aug; 81():115-20. PubMed ID: 24726274 [TBL] [Abstract][Full Text] [Related]
31. The Responses of Light Reaction of Photosynthesis to Dynamic Sunflecks in a Typically Shade-Tolerant Species Zhang JY; Zhang QH; Shuang SP; Cun Z; Wu HM; Chen JW Front Plant Sci; 2021; 12():718981. PubMed ID: 34721452 [TBL] [Abstract][Full Text] [Related]
32. Non-Photochemical Quenching under Drought and Fluctuating Light. Nosalewicz A; Okoń K; Skorupka M Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563573 [TBL] [Abstract][Full Text] [Related]
33. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Naranjo B; Mignée C; Krieger-Liszkay A; Hornero-Méndez D; Gallardo-Guerrero L; Cejudo FJ; Lindahl M Plant Cell Environ; 2016 Apr; 39(4):804-22. PubMed ID: 26476233 [TBL] [Abstract][Full Text] [Related]
34. Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. Ware MA; Belgio E; Ruban AV J Exp Bot; 2015 Mar; 66(5):1259-70. PubMed ID: 25429003 [TBL] [Abstract][Full Text] [Related]
35. Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field. Acebron K; Matsubara S; Jedmowski C; Emin D; Muller O; Rascher U New Phytol; 2021 Feb; 229(4):2104-2119. PubMed ID: 33020945 [TBL] [Abstract][Full Text] [Related]
36. Effect of oxygen on the non-photochemical quenching of vascular plants and potential oxygen deficiency in the stroma of PsbS-knock-out rice. Zulfugarov IS; Wu G; Tovuu A; Lee CH Plant Sci; 2019 Sep; 286():1-6. PubMed ID: 31300135 [TBL] [Abstract][Full Text] [Related]
37. Inhibition of non-photochemical quenching increases functional absorption cross-section of photosystem II as excitation from closed reaction centres is transferred to open centres, facilitating earlier light saturation of photosynthetic electron transport. Osmond CB; Chow WS; Robinson SA Funct Plant Biol; 2022 May; 49(6):463-482. PubMed ID: 33705686 [TBL] [Abstract][Full Text] [Related]
38. Photosynthesis, light energy partitioning, and photoprotection in the shade-demanding species Panax notoginseng under high and low level of growth irradiance. Chen JW; Kuang SB; Long GQ; Yang SC; Meng ZG; Li LG; Chen ZJ; Zhang GH Funct Plant Biol; 2016 Jun; 43(6):479-491. PubMed ID: 32480478 [TBL] [Abstract][Full Text] [Related]
39. Seasonal changes in the excess energy dissipation from Photosystem II antennae in overwintering evergreen broad-leaved trees Quercus myrsinaefolia and Machilus thunbergii. Yamazaki JY; Kamata K; Maruta E J Photochem Photobiol B; 2011; 104(1-2):348-56. PubMed ID: 21190864 [TBL] [Abstract][Full Text] [Related]
40. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions. Kuzminov FI; Gorbunov MY Photosynth Res; 2016 Feb; 127(2):219-35. PubMed ID: 26220363 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]