These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 27076417)

  • 21. The contribution of the insula to motor aspects of speech production: a review and a hypothesis.
    Ackermann H; Riecker A
    Brain Lang; 2004 May; 89(2):320-8. PubMed ID: 15068914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuromotor speech impairment: it's all in the talking.
    Ziegler W; Ackermann H
    Folia Phoniatr Logop; 2013; 65(2):55-67. PubMed ID: 23942013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. "Silent event-related" fMRI reveals reduced sensorimotor activation in laryngeal dystonia.
    Haslinger B; Erhard P; Dresel C; Castrop F; Roettinger M; Ceballos-Baumann AO
    Neurology; 2005 Nov; 65(10):1562-9. PubMed ID: 16301482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of the speech-ready brain: The voice/jaw connection in the human motor cortex.
    Brown S; Yuan Y; Belyk M
    J Comp Neurol; 2021 Apr; 529(5):1018-1028. PubMed ID: 32720701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Age-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control.
    Fujiyama H; Van Soom J; Rens G; Gooijers J; Leunissen I; Levin O; Swinnen SP
    J Neurosci; 2016 Feb; 36(6):1808-22. PubMed ID: 26865607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality.
    Brovelli A; Ding M; Ledberg A; Chen Y; Nakamura R; Bressler SL
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9849-54. PubMed ID: 15210971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurophysiologic markers in laryngeal muscles indicate functional anatomy of laryngeal primary motor cortex and premotor cortex in the caudal opercular part of inferior frontal gyrus.
    Deletis V; Rogić M; Fernández-Conejero I; Gabarrós A; Jerončić A
    Clin Neurophysiol; 2014 Sep; 125(9):1912-22. PubMed ID: 24613682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parietofrontal circuits for action and space perception in the macaque monkey.
    Matelli M; Luppino G
    Neuroimage; 2001 Jul; 14(1 Pt 2):S27-32. PubMed ID: 11373129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The organization of frontoparietal cortex in the tree shrew (Tupaia belangeri): II. Connectional evidence for a frontal-posterior parietal network.
    Remple MS; Reed JL; Stepniewska I; Lyon DC; Kaas JH
    J Comp Neurol; 2007 Mar; 501(1):121-49. PubMed ID: 17206607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative morphology and physiology of the vocal production apparatus and the brain in the extant primates.
    Iwasaki SI; Yoshimura K; Asami T; Erdoğan S
    Ann Anat; 2022 Feb; 240():151887. PubMed ID: 35032565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity.
    Mars RB; Jbabdi S; Sallet J; O'Reilly JX; Croxson PL; Olivier E; Noonan MP; Bergmann C; Mitchell AS; Baxter MG; Behrens TE; Johansen-Berg H; Tomassini V; Miller KL; Rushworth MF
    J Neurosci; 2011 Mar; 31(11):4087-100. PubMed ID: 21411650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure.
    Hinkley LB; Krubitzer LA; Nagarajan SS; Disbrow EA
    J Neurophysiol; 2007 Feb; 97(2):1288-97. PubMed ID: 17122318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The descending motorcortical pathway to the laryngeal motoneurons in the squirrel monkey.
    Jürgens U; Ehrenreich L
    Brain Res; 2007 May; 1148():90-5. PubMed ID: 17362883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping Human Laryngeal Motor Cortex during Vocalization.
    Eichert N; Papp D; Mars RB; Watkins KE
    Cereb Cortex; 2020 Nov; 30(12):6254-6269. PubMed ID: 32728706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. White matter connections of the supplementary motor area in humans.
    Vergani F; Lacerda L; Martino J; Attems J; Morris C; Mitchell P; Thiebaut de Schotten M; Dell'Acqua F
    J Neurol Neurosurg Psychiatry; 2014 Dec; 85(12):1377-85. PubMed ID: 24741063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tactile stimulus predictability modulates activity in a tactile-motor cortical network.
    Nelson AJ; Staines WR; McIlroy WE
    Exp Brain Res; 2004 Jan; 154(1):22-32. PubMed ID: 14574427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct Neural Activities in Premotor Cortex during Natural Vocal Behaviors in a New World Primate, the Common Marmoset (Callithrix jacchus).
    Roy S; Zhao L; Wang X
    J Neurosci; 2016 Nov; 36(48):12168-12179. PubMed ID: 27903726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anatomy and lateralization of the human corticobulbar tracts: an fMRI-guided tractography study.
    Liégeois FJ; Butler J; Morgan AT; Clayden JD; Clark CA
    Brain Struct Funct; 2016 Jul; 221(6):3337-45. PubMed ID: 26411871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Control of Vocal Pitch in Human Laryngeal Motor Cortex.
    Dichter BK; Breshears JD; Leonard MK; Chang EF
    Cell; 2018 Jun; 174(1):21-31.e9. PubMed ID: 29958109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LaDIVA: A neurocomputational model providing laryngeal motor control for speech acquisition and production.
    Weerathunge HR; Alzamendi GA; Cler GJ; Guenther FH; Stepp CE; Zañartu M
    PLoS Comput Biol; 2022 Jun; 18(6):e1010159. PubMed ID: 35737706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.