These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27076456)

  • 1. Identifying Cell Populations in Flow Cytometry Data Using Phenotypic Signatures.
    Pouyan MB; Nourani M
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):880-891. PubMed ID: 27076456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational approach for phenotypic comparisons of cell populations in high-dimensional cytometry data.
    Platon L; Pejoski D; Gautreau G; Targat B; Le Grand R; Beignon AS; Tchitchek N
    Methods; 2018 Jan; 132():66-75. PubMed ID: 28917725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. immunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets.
    Sörensen T; Baumgart S; Durek P; Grützkau A; Häupl T
    Cytometry A; 2015 Jul; 87(7):603-15. PubMed ID: 25850678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unfold High-Dimensional Clouds for Exhaustive Gating of Flow Cytometry Data.
    Qiu P
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1045-51. PubMed ID: 26357042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification.
    Malek M; Taghiyar MJ; Chong L; Finak G; Gottardo R; Brinkman RR
    Bioinformatics; 2015 Feb; 31(4):606-7. PubMed ID: 25378466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure.
    Hsiao C; Liu M; Stanton R; McGee M; Qian Y; Scheuermann RH
    Cytometry A; 2016 Jan; 89(1):71-88. PubMed ID: 26274018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single and multi-subject clustering of flow cytometry data for cell-type identification and anomaly detection.
    Pouyan MB; Jindal V; Birjandtalab J; Nourani M
    BMC Med Genomics; 2016 Aug; 9 Suppl 2(Suppl 2):41. PubMed ID: 27510222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatically generate two-dimensional gating hierarchy from clustered cytometry data.
    Yang X; Qiu P
    Cytometry A; 2018 Oct; 93(10):1039-1050. PubMed ID: 30176185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Misty Mountain clustering: application to fast unsupervised flow cytometry gating.
    Sugár IP; Sealfon SC
    BMC Bioinformatics; 2010 Oct; 11():502. PubMed ID: 20932336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated identification of stratifying signatures in cellular subpopulations.
    Bruggner RV; Bodenmiller B; Dill DL; Tibshirani RJ; Nolan GP
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):E2770-7. PubMed ID: 24979804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-parametric cytometry from a complex cellular sample: Improvements and limits of manual versus computational-based interactive analyses.
    Gondois-Rey F; Granjeaud S; Rouillier P; Rioualen C; Bidaut G; Olive D
    Cytometry A; 2016 May; 89(5):480-90. PubMed ID: 27059253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CyCadas: accelerating interactive annotation and analysis of clustered cytometry data.
    Hunewald O; Demczuk A; Longworth J; Ollert M
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39374546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computationally efficient multidimensional analysis of complex flow cytometry data using second order polynomial histograms.
    Zaunders J; Jing J; Leipold M; Maecker H; Kelleher AD; Koch I
    Cytometry A; 2016 Jan; 89(1):44-58. PubMed ID: 26097104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature-guided clustering of multi-dimensional flow cytometry datasets.
    Zeng QT; Pratt JP; Pak J; Ravnic D; Huss H; Mentzer SJ
    J Biomed Inform; 2007 Jun; 40(3):325-31. PubMed ID: 16901761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated gating of flow cytometry data via robust model-based clustering.
    Lo K; Brinkman RR; Gottardo R
    Cytometry A; 2008 Apr; 73(4):321-32. PubMed ID: 18307272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable clustering algorithms for continuous environmental flow cytometry.
    Hyrkas J; Clayton S; Ribalet F; Halperin D; Armbrust EV; Howe B
    Bioinformatics; 2016 Feb; 32(3):417-23. PubMed ID: 26476780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cytometree: A binary tree algorithm for automatic gating in cytometry analysis.
    Commenges D; Alkhassim C; Gottardo R; Hejblum B; Thiébaut R
    Cytometry A; 2018 Nov; 93(11):1132-1140. PubMed ID: 30277649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RchyOptimyx: cellular hierarchy optimization for flow cytometry.
    Aghaeepour N; Jalali A; O'Neill K; Chattopadhyay PK; Roederer M; Hoos HH; Brinkman RR
    Cytometry A; 2012 Dec; 81(12):1022-30. PubMed ID: 23044634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering.
    Weber LM; Nowicka M; Soneson C; Robinson MD
    Commun Biol; 2019; 2():183. PubMed ID: 31098416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.