These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27076458)

  • 1. A Characterization of Minimum Spanning Tree-Like Metric Spaces.
    Hayamizu M; Endo H; Fukumizu K
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):468-471. PubMed ID: 27076458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation.
    Wang Z; Huang D; Meng H; Tang C
    Biosystems; 2013 Oct; 114(1):1-7. PubMed ID: 23871964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional grouping of similar genes using eigenanalysis on minimum spanning tree based neighborhood graph.
    Jothi R; Mohanty SK; Ojha A
    Comput Biol Med; 2016 Apr; 71():135-48. PubMed ID: 26945461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel clustering algorithm for large data sets with applications in bioinformatics.
    Olman V; Mao F; Wu H; Xu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(2):344-52. PubMed ID: 19407357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degree sums and dense spanning trees.
    Li T; Gao Y; Dong Q; Wang H
    PLoS One; 2017; 12(9):e0184912. PubMed ID: 28926585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimum spanning trees for gene expression data clustering.
    Xu Y; Olman V; Xu D
    Genome Inform; 2001; 12():24-33. PubMed ID: 11791221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metric for measuring the effectiveness of clustering of DNA microarray expression.
    Loganantharaj R; Cheepala S; Clifford J
    BMC Bioinformatics; 2006 Sep; 7 Suppl 2(Suppl 2):S5. PubMed ID: 17118148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A metric on the space of reduced phylogenetic networks.
    Nakhleh L
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):218-22. PubMed ID: 20431142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient algorithm for approximating geodesic distances in tree space.
    Battagliero S; Puglia G; Vicario S; Rubino F; Scioscia G; Leo P
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1196-207. PubMed ID: 21116041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast algorithm for computing geodesic distances in tree space.
    Owen M; Provan JS
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):2-13. PubMed ID: 21071792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consistency of topological moves based on the balanced minimum evolution principle of phylogenetic inference.
    Bordewich M; Gascuel O; Huber KT; Moulton V
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(1):110-7. PubMed ID: 19179704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of regulatory binding sites using minimum spanning trees.
    Olman V; Xu D; Xu Y
    Pac Symp Biocomput; 2003; ():327-38. PubMed ID: 12603039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance-Based Phylogenetic Methods Around a Polytomy.
    Davidson R; Sullivant S
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(2):325-35. PubMed ID: 26355780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ETEA: a Euclidean minimum spanning tree-based evolutionary algorithm for multi-objective optimization.
    Li M; Yang S; Zheng J; Liu X
    Evol Comput; 2014; 22(2):189-230. PubMed ID: 23746293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth functions and mutidimensional medians on minimal spanning trees.
    Yang M; Modarres R; Guo L
    J Appl Stat; 2020; 47(2):323-336. PubMed ID: 35706518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy guarantees for phylogeny reconstruction algorithms based on balanced minimum evolution.
    Bordewich M; Mihaescu R
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):576-83. PubMed ID: 24091392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The LUX Score: A Metric for Lipidome Homology.
    Marella C; Torda AE; Schwudke D
    PLoS Comput Biol; 2015; 11(9):e1004511. PubMed ID: 26393792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimum-flip supertrees: complexity and algorithms.
    Chen D; Eulenstein O; Fernandez-Baca D; Sanderson M
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(2):165-73. PubMed ID: 17048402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable large-margin Mahalanobis distance metric learning.
    Shen C; Kim J; Wang L
    IEEE Trans Neural Netw; 2010 Sep; 21(9):1524-30. PubMed ID: 20709641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polynomial-time algorithm computing lower and upper bounds of the rooted subtree prune and regraft distance.
    Kannan L; Li H; Mushegian A
    J Comput Biol; 2011 May; 18(5):743-57. PubMed ID: 21166560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.