These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 27076460)
1. ISEA: Iterative Seed-Extension Algorithm for De Novo Assembly Using Paired-End Information and Insert Size Distribution. Li M; Liao Z; He Y; Wang J; Luo J; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):916-925. PubMed ID: 27076460 [TBL] [Abstract][Full Text] [Related]
2. EPGA: de novo assembly using the distributions of reads and insert size. Luo J; Wang J; Zhang Z; Wu FX; Li M; Pan Y Bioinformatics; 2015 Mar; 31(6):825-33. PubMed ID: 25406329 [TBL] [Abstract][Full Text] [Related]
3. BASE: a practical de novo assembler for large genomes using long NGS reads. Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches. Cherukuri Y; Janga SC BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636 [TBL] [Abstract][Full Text] [Related]
5. GapFiller: a de novo assembly approach to fill the gap within paired reads. Nadalin F; Vezzi F; Policriti A BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S8. PubMed ID: 23095524 [TBL] [Abstract][Full Text] [Related]
6. AlignGraph: algorithm for secondary de novo genome assembly guided by closely related references. Bao E; Jiang T; Girke T Bioinformatics; 2014 Jun; 30(12):i319-i328. PubMed ID: 24932000 [TBL] [Abstract][Full Text] [Related]
7. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly. McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910 [TBL] [Abstract][Full Text] [Related]
8. De novo assembly of bacterial genomes with repetitive DNA regions by dnaasm application. Kuśmirek W; Nowak R BMC Bioinformatics; 2018 Jul; 19(1):273. PubMed ID: 30021513 [TBL] [Abstract][Full Text] [Related]
9. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads. Al-Okaily AA BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881 [TBL] [Abstract][Full Text] [Related]
10. PERGA: a paired-end read guided de novo assembler for extending contigs using SVM and look ahead approach. Zhu X; Leung HC; Chin FY; Yiu SM; Quan G; Liu B; Wang Y PLoS One; 2014; 9(12):e114253. PubMed ID: 25461763 [TBL] [Abstract][Full Text] [Related]
11. PECC: Correcting contigs based on paired-end read distribution. Li M; Wu B; Yan X; Luo J; Pan Y; Wu FX; Wang J Comput Biol Chem; 2017 Aug; 69():178-184. PubMed ID: 28545961 [TBL] [Abstract][Full Text] [Related]
12. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly. Heydari M; Miclotte G; Van de Peer Y; Fostier J BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722 [TBL] [Abstract][Full Text] [Related]
13. Clover: a clustering-oriented de novo assembler for Illumina sequences. Hsieh MF; Lu CL; Tang CY BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354 [TBL] [Abstract][Full Text] [Related]
14. The present and future of de novo whole-genome assembly. Sohn JI; Nam JW Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661 [TBL] [Abstract][Full Text] [Related]
15. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Peng Y; Leung HC; Yiu SM; Chin FY Bioinformatics; 2012 Jun; 28(11):1420-8. PubMed ID: 22495754 [TBL] [Abstract][Full Text] [Related]
16. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study. Cerdeira LT; Carneiro AR; Ramos RT; de Almeida SS; D'Afonseca V; Schneider MP; Baumbach J; Tauch A; McCulloch JA; Azevedo VA; Silva A J Microbiol Methods; 2011 Aug; 86(2):218-23. PubMed ID: 21620904 [TBL] [Abstract][Full Text] [Related]
17. Assembly of long error-prone reads using de Bruijn graphs. Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617 [TBL] [Abstract][Full Text] [Related]
18. Pseudo-Sanger sequencing: massively parallel production of long and near error-free reads using NGS technology. Ruan J; Jiang L; Chong Z; Gong Q; Li H; Li C; Tao Y; Zheng C; Zhai W; Turissini D; Cannon CH; Lu X; Wu CI BMC Genomics; 2013 Oct; 14(1):711. PubMed ID: 24134808 [TBL] [Abstract][Full Text] [Related]
19. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. Wick RR; Judd LM; Gorrie CL; Holt KE PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827 [TBL] [Abstract][Full Text] [Related]
20. BOSS: a novel scaffolding algorithm based on an optimized scaffold graph. Luo J; Wang J; Zhang Z; Li M; Wu FX Bioinformatics; 2017 Jan; 33(2):169-176. PubMed ID: 27634951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]