BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27076463)

  • 1. Prediction of Novel Drugs for Hepatocellular Carcinoma Based on Multi-Source Random Walk.
    Yu L; Su R; Wang B; Zhang L; Zou Y; Zhang J; Gao L
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):966-977. PubMed ID: 27076463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Novel Drugs and Diseases for Hepatocellular Carcinoma Based on Multi-Source Simulated Annealing Based Random Walk.
    Ibrahim SJA; Thangamani M
    J Med Syst; 2018 Sep; 42(10):188. PubMed ID: 30173379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying prognostic features by bottom-up approach and correlating to drug repositioning.
    Li W; Yu J; Lian B; Sun H; Li J; Zhang M; Li L; Li Y; Liu Q; Xie L
    PLoS One; 2015; 10(3):e0118672. PubMed ID: 25738841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting therapeutic drugs for hepatocellular carcinoma based on tissue-specific pathways.
    Yu L; Wang M; Yang Y; Xu F; Zhang X; Xie F; Gao L; Li X
    PLoS Comput Biol; 2021 Feb; 17(2):e1008696. PubMed ID: 33561121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Potential Drugs for Breast Cancer based on miRNA and Tissue Specificity.
    Yu L; Zhao J; Gao L
    Int J Biol Sci; 2018; 14(8):971-982. PubMed ID: 29989066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis.
    Mou T; Zhu D; Wei X; Li T; Zheng D; Pu J; Guo Z; Wu Z
    World J Surg Oncol; 2017 Mar; 15(1):63. PubMed ID: 28302149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MNBDR: A Module Network Based Method for Drug Repositioning.
    Chen HG; Zhou XH
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33375395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.
    Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G
    Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of hepatocellular carcinoma related genes with k-th shortest paths in a protein-protein interaction network.
    Jiang M; Chen Y; Zhang Y; Chen L; Zhang N; Huang T; Cai YD; Kong X
    Mol Biosyst; 2013 Nov; 9(11):2720-8. PubMed ID: 24056857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Computational Framework to Identify Transcriptional and Network Differences between Hepatocellular Carcinoma and Normal Liver Tissue and Their Applications in Repositioning Drugs.
    Hu A; Wei Z; Zheng Z; Luo B; Yi J; Zhou X; Zeng C
    Biomed Res Int; 2021; 2021():9921195. PubMed ID: 34604388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repositioning based on triangularly balanced structure for tissue-specific diseases in incomplete interactome.
    Yu L; Zhao J; Gao L
    Artif Intell Med; 2017 Mar; 77():53-63. PubMed ID: 28545612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of heterogeneous redox responses in hepatocellular carcinoma patients using network analysis.
    Benfeitas R; Bidkhori G; Mukhopadhyay B; Klevstig M; Arif M; Zhang C; Lee S; Cinar R; Nielsen J; Uhlen M; Boren J; Kunos G; Mardinoglu A
    EBioMedicine; 2019 Feb; 40():471-487. PubMed ID: 30606699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifier of cross talk genes predicts the prognosis of hepatocellular carcinoma.
    Zhai X; Xue Q; Liu Q; Guo Y; Chen Z
    Mol Med Rep; 2017 Sep; 16(3):3253-3261. PubMed ID: 28713927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks.
    Liu H; Song Y; Guan J; Luo L; Zhuang Z
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics analysis of gene expression alterations in microRNA‑122 knockout mice with hepatocellular carcinoma.
    He B; He Y; Shi W; Gong S; Chen X; Xiao J; Gu J; Ding W; Wang Y
    Mol Med Rep; 2017 Jun; 15(6):3681-3689. PubMed ID: 28393247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of comprehensive bioinformatics approaches to reconnoiter crucial genes and pathways underpinning hepatocellular carcinoma: a drug repurposing endeavor.
    Nair G; Hema Sree GNS; Saraswathy GR; Marise VLP; Krishna Murthy TP
    Med Oncol; 2021 Oct; 38(12):145. PubMed ID: 34687371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive transcriptomic and co-expression analysis of ABL1 gene and molecularly targeted drugs in hepatocellular carcinoma based on multi-database mining.
    Lan F; Chen X; Xiong Z; Cao Z; Lu L; Zhong Y; Zhan X; Yang Y; Shao Y; Li M; Han Z; Zhu X
    Med Oncol; 2022 Jul; 39(10):146. PubMed ID: 35834027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway.
    Zhang Y; Guo X; Xiong L; Yu L; Li Z; Guo Q; Li Z; Li B; Lin N
    Mol Cancer; 2014 Nov; 13():253. PubMed ID: 25424347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying potential drug targets in hepatocellular carcinoma based on network analysis and one-class support vector machine.
    Tong Z; Zhou Y; Wang J
    Sci Rep; 2019 Jul; 9(1):10442. PubMed ID: 31320657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-dimensional biology to comprehend hepatocellular carcinoma.
    Vivekanandan P; Singh OV
    Expert Rev Proteomics; 2008 Feb; 5(1):45-60. PubMed ID: 18282123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.