These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27076690)

  • 41. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000.
    Durack PJ; Wijffels SE; Matear RJ
    Science; 2012 Apr; 336(6080):455-8. PubMed ID: 22539717
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Future climate and cryosphere impacts on the hydrology of a scarcely gauged catchment on the Jhelum river basin, Northern Pakistan.
    Azmat M; Qamar MU; Huggel C; Hussain E
    Sci Total Environ; 2018 Oct; 639():961-976. PubMed ID: 29929335
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment.
    Wagner PD; Bhallamudi SM; Narasimhan B; Kantakumar LN; Sudheer KP; Kumar S; Schneider K; Fiener P
    Sci Total Environ; 2016 Jan; 539():153-164. PubMed ID: 26360457
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble.
    Jiang M; Felzer BS; Sahagian D
    Sci Rep; 2016 Jul; 6():29962. PubMed ID: 27425819
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Future Hydroclimatic Impacts on Africa: Beyond the Paris Agreement.
    Piemontese L; Fetzer I; Rockström J; Jaramillo F
    Earths Future; 2019 Jul; 7(7):748-761. PubMed ID: 33043068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Projected and Observed Aridity and Climate Change in the East Coast of South India under RCP 4.5.
    Ramachandran A; Praveen D; Jaganathan R; Palanivelu K
    ScientificWorldJournal; 2015; 2015():169761. PubMed ID: 26771002
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Causes of model dry and warm bias over central U.S. and impact on climate projections.
    Lin Y; Dong W; Zhang M; Xie Y; Xue W; Huang J; Luo Y
    Nat Commun; 2017 Oct; 8(1):881. PubMed ID: 29026073
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Climate change effects on the hydrological regime of small non-perennial river basins.
    Pumo D; Caracciolo D; Viola F; Noto LV
    Sci Total Environ; 2016 Jan; 542(Pt A):76-92. PubMed ID: 26519569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Climate change scenarios of herbaceous production along an aridity gradient: vulnerability increases with aridity.
    Golodets C; Sternberg M; Kigel J; Boeken B; Henkin Z; Seligman NG; Ungar ED
    Oecologia; 2015 Apr; 177(4):971-9. PubMed ID: 25663330
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regional temperature and precipitation changes under high-end (≥4°C) global warming.
    Sanderson MG; Hemming DL; Betts RA
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1934):85-98. PubMed ID: 21115514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactions of Multiple Atmospheric Circulation Drive the Drought in Tarim River Basin.
    Wu YP; Feng GL; Li BL
    Sci Rep; 2016 May; 6():26470. PubMed ID: 27198665
    [TBL] [Abstract][Full Text] [Related]  

  • 52. What is the main driving force of hydrological cycle variations in the semiarid and semi-humid Weihe River Basin, China?
    Ji L; Duan K
    Sci Total Environ; 2019 Sep; 684():254-264. PubMed ID: 31153072
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Projections of actual evapotranspiration under the 1.5 °C and 2.0 °C global warming scenarios in sandy areas in northern China.
    Ma X; Zhao C; Tao H; Zhu J; Kundzewicz ZW
    Sci Total Environ; 2018 Dec; 645():1496-1508. PubMed ID: 30248871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013.
    Li G; Zhang F; Jing Y; Liu Y; Sun G
    Sci Total Environ; 2017 Oct; 596-597():256-265. PubMed ID: 28433768
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Climate-induced water availability changes in Europe.
    Brouwer F; Falkenmark M
    Environ Monit Assess; 1989 Aug; 13(1):75-98. PubMed ID: 24243112
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of rainfall and competition intensity on forest response to drought: lessons learned from a dry extreme.
    Dorman M; Perevolotsky A; Sarris D; Svoray T
    Oecologia; 2015 Apr; 177(4):1025-38. PubMed ID: 25656584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The decreasing range between dry- and wet- season precipitation over land and its effect on vegetation primary productivity.
    Murray-Tortarolo G; Jaramillo VJ; Maass M; Friedlingstein P; Sitch S
    PLoS One; 2017; 12(12):e0190304. PubMed ID: 29284050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Drought risk assessment under climate change is sensitive to methodological choices for the estimation of evaporative demand.
    Dewes CF; Rangwala I; Barsugli JJ; Hobbins MT; Kumar S
    PLoS One; 2017; 12(3):e0174045. PubMed ID: 28301603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trend analysis of watershed-scale precipitation over Northern California by means of dynamically-downscaled CMIP5 future climate projections.
    Ishida K; Gorguner M; Ercan A; Trinh T; Kavvas ML
    Sci Total Environ; 2017 Aug; 592():12-24. PubMed ID: 28292670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach.
    Kumar P; Wiltshire A; Mathison C; Asharaf S; Ahrens B; Lucas-Picher P; Christensen JH; Gobiet A; Saeed F; Hagemann S; Jacob D
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S18-30. PubMed ID: 23541400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.