BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27076699)

  • 1. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO
    Bairi VG; Lim JH; Quevedo IR; Mudalige TK; Linder SW
    Spectrochim Acta Part B At Spectrosc; 2016 Feb; 116():21-27. PubMed ID: 27076699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research?
    Rouillon M; Taylor MP
    Environ Pollut; 2016 Jul; 214():255-264. PubMed ID: 27100216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ investigation of heavy metals at trace concentrations in greenhouse soils via portable X-ray fluorescence spectroscopy.
    Tian K; Huang B; Xing Z; Hu W
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):11011-11022. PubMed ID: 29404952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid determination of silver in nanobased liquid dietary supplements using a portable X-ray fluorescence analyzer.
    Sánchez-Pomales G; Mudalige TK; Lim JH; Linder SW
    J Agric Food Chem; 2013 Jul; 61(30):7250-7. PubMed ID: 23805852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry.
    McGladdery C; Weindorf DC; Chakraborty S; Li B; Paulette L; Podar D; Pearson D; Kusi NYO; Duda B
    J Environ Manage; 2018 Mar; 210():210-225. PubMed ID: 29348058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of a portable X-ray fluorescence spectrometer for measuring nickel in plants: sample preparation and validation.
    Lima LHV; da Silva FBV; Echevarria G; do Nascimento CWA
    Environ Monit Assess; 2024 May; 196(6):540. PubMed ID: 38733434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ICP-MS based methods to characterize nanoparticles of TiO
    Bocca B; Caimi S; Senofonte O; Alimonti A; Petrucci F
    Sci Total Environ; 2018 Jul; 630():922-930. PubMed ID: 29499547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Monitoring Soil Environmental Qualities of Heavy Metal by Portable X-Ray Fluorescence Spectrometer.
    Wang B; Yu JX; Huang B; Hu WY; Chang Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1735-40. PubMed ID: 26601400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of X-ray fluorescence spectroscopy as a method for the rapid and direct determination of sodium in cheese.
    Stankey JA; Akbulut C; Romero JE; Govindasamy-Lucey S
    J Dairy Sci; 2015 Aug; 98(8):5040-51. PubMed ID: 26051319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the Portable X-ray Fluorescence Reliability for Metal(loid)s Detection and Soil Contamination Status.
    Alqattan ZA; Artiola JF; Walls D; Ramírez-Andreotta MD
    Res Sq; 2023 Oct; ():. PubMed ID: 37886589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for measurement of serum copper, zinc and selenium using total reflection X-ray fluorescence spectroscopy on the PICOFOX analyser: Validation and comparison with atomic absorption spectroscopy and inductively coupled plasma mass spectrometry.
    Jeffery J; Frank AR; Hockridge S; Stosnach H; Costelloe SJ
    Ann Clin Biochem; 2019 Jan; 56(1):170-178. PubMed ID: 30056759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correcting correlation quality of portable X-ray fluorescence to better map heavy metal contamination by spatial co-kriging interpolation.
    Zhao M; Chen Z; Qian C; Zhao Y; Xu Y; Liu Y
    Ecotoxicol Environ Saf; 2024 Feb; 271():115962. PubMed ID: 38237394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites.
    Jang M
    Environ Geochem Health; 2010 Jun; 32(3):207-16. PubMed ID: 19768558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing risk and increasing confidence of decision making at a lower cost: In-situ pXRF assessment of metal-contaminated sites.
    Rouillon M; Taylor MP; Dong C
    Environ Pollut; 2017 Oct; 229():780-789. PubMed ID: 28668180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry.
    Hu W; Huang B; Weindorf DC; Chen Y
    Bull Environ Contam Toxicol; 2014 Apr; 92(4):420-6. PubMed ID: 24585255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable X-Ray Fluorescence Spectroscopy for Rapid and Cost-Effective Determination of Elemental Composition of Ground Forage.
    Sapkota Y; McDonald LM; Griggs TC; Basden TJ; Drake BL
    Front Plant Sci; 2019; 10():317. PubMed ID: 30941156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Rapid, Accurate, and Efficient Method to Map Heavy Metal-Contaminated Soils of Abandoned Mine Sites Using Converted Portable XRF Data and GIS.
    Suh J; Lee H; Choi Y
    Int J Environ Res Public Health; 2016 Dec; 13(12):. PubMed ID: 27916970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis].
    Ran J; Wang DJ; Wang C; Bo LJ; Zheng JC; Yao LP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3113-8. PubMed ID: 25752069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics.
    Lu PJ; Huang SC; Chen YP; Chiueh LC; Shih DY
    J Food Drug Anal; 2015 Sep; 23(3):587-594. PubMed ID: 28911719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient and toxic elements in soils and plants across 10 urban community gardens: Comparing pXRF and ICP-based soil measurements.
    McStay AC; Walser SL; Sirkovich EC; Perdrial N; Richardson JB
    J Environ Qual; 2022 May; 51(3):439-450. PubMed ID: 35419845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.