BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 27077142)

  • 1. Controlled antibody release from gelatin for on-chip sample preparation.
    Zhang X; Wasserberg D; Breukers C; Terstappen LW; Beck M
    Analyst; 2016 May; 141(10):3068-76. PubMed ID: 27077142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-Switch Cytometry-Releasing Antibody on Demand from Inkjet-Printed Gelatin for On-Chip Immunostaining.
    Zhang X; Wasserberg D; Breukers C; Terstappen LWMM; Beck M
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27539-27545. PubMed ID: 27684590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-printed cell counting chambers with on-chip sample preparation for point-of-care CD4 counting.
    Wasserberg D; Zhang X; Breukers C; Connell BJ; Baeten E; van den Blink D; S O L À Benet È; Bloem AC; Nijhuis M; Wensing AMJ; Terstappen LWMM; Beck M
    Biosens Bioelectron; 2018 Oct; 117():659-668. PubMed ID: 30005387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip sample preparation by controlled release of antibodies for simple CD4 counting.
    Beck M; Brockhuis S; van der Velde N; Breukers C; Greve J; Terstappen LW
    Lab Chip; 2012 Jan; 12(1):167-73. PubMed ID: 22048158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary-driven multiparametric microfluidic chips for one-step immunoassays.
    Gervais L; Hitzbleck M; Delamarche E
    Biosens Bioelectron; 2011 Sep; 27(1):64-70. PubMed ID: 21752632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chip electrophoresis of gelatin-based nanoparticles.
    Weiss VU; Lehner A; Grombe R; Marchetti-Deschmann M; Allmaier G
    Electrophoresis; 2013 Aug; 34(15):2152-61. PubMed ID: 23712750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An inkjet-printed polysaccharide matrix for on-chip sample preparation in point-of-care cell counting chambers.
    Zhang X; Wasserberg D; Breukers C; Connell BJ; Schipper PJ; van Dalum J; Baeten E; van den Blink D; Bloem AC; Nijhuis M; Wensing AMJ; Terstappen LWMM; Beck M
    RSC Adv; 2020 May; 10(31):18062-18072. PubMed ID: 35517228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.
    Temiz Y; Delamarche E
    Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: A critical review.
    Sonker M; Sahore V; Woolley AT
    Anal Chim Acta; 2017 Sep; 986():1-11. PubMed ID: 28870312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for the fabrication of enzymatically crosslinked gelatin microchannels for microfluidic cell culture.
    Paguirigan AL; Beebe DJ
    Nat Protoc; 2007; 2(7):1782-8. PubMed ID: 17641645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes.
    Sin A; Murthy SK; Revzin A; Tompkins RG; Toner M
    Biotechnol Bioeng; 2005 Sep; 91(7):816-26. PubMed ID: 16037988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dual role of deposited microbead plug (DMBP): a blood filter and a conjugate reagent carrier toward point-of-care microfluidic immunoassay.
    Li C; Liu C; Xu Z; Li J
    Talanta; 2012 Aug; 97():376-81. PubMed ID: 22841095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules.
    Huang KS; Lu K; Yeh CS; Chung SR; Lin CH; Yang CH; Dong YS
    J Control Release; 2009 Jul; 137(1):15-9. PubMed ID: 19264103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical cell counting process characterization in a microfluidic impedance cytometer.
    Hassan U; Bashir R
    Biomed Microdevices; 2014 Oct; 16(5):697-704. PubMed ID: 24898912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip integrated labelling, transport and detection of tumour cells.
    Woods J; Docker PT; Dyer CE; Haswell SJ; Greenman J
    Electrophoresis; 2011 Nov; 32(22):3188-95. PubMed ID: 22025027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated cellular sample preparation using a Centrifuge-on-a-Chip.
    Mach AJ; Kim JH; Arshi A; Hur SC; Di Carlo D
    Lab Chip; 2011 Sep; 11(17):2827-34. PubMed ID: 21804970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Teaching microfluidic diagnostics using Jell-O(®) chips.
    Yang CW; Lagally ET
    Methods Mol Biol; 2013; 949():25-40. PubMed ID: 23329433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled release of reagents in capillary-driven microfluidics using reagent integrators.
    Hitzbleck M; Gervais L; Delamarche E
    Lab Chip; 2011 Aug; 11(16):2680-5. PubMed ID: 21674120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.