These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. An Adaptive Genetic Association Test Using Double Kernel Machines. Zhan X; Epstein MP; Ghosh D Stat Biosci; 2015 Oct; 7(2):262-281. PubMed ID: 26640602 [TBL] [Abstract][Full Text] [Related]
7. Sparse kernel learning with LASSO and Bayesian inference algorithm. Gao J; Kwan PW; Shi D Neural Netw; 2010 Mar; 23(2):257-64. PubMed ID: 19604671 [TBL] [Abstract][Full Text] [Related]
8. Variable Selection for Sparse High-Dimensional Nonlinear Regression Models by Combining Nonnegative Garrote and Sure Independence Screening. Wu S; Xue H; Wu Y; Wu H Stat Sin; 2014 Jul; 24(3):1365-1387. PubMed ID: 25170239 [TBL] [Abstract][Full Text] [Related]
9. Powerful tests for detecting a gene effect in the presence of possible gene-gene interactions using garrote kernel machines. Maity A; Lin X Biometrics; 2011 Dec; 67(4):1271-84. PubMed ID: 21504419 [TBL] [Abstract][Full Text] [Related]
10. Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization. Chen S; Hong X; Harris CJ IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1708-17. PubMed ID: 15462438 [TBL] [Abstract][Full Text] [Related]
11. Sparse multiple kernel learning for signal processing applications. Subrahmanya N; Shin YC IEEE Trans Pattern Anal Mach Intell; 2010 May; 32(5):788-98. PubMed ID: 20299705 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Bondell HD; Reich BJ Biometrics; 2008 Mar; 64(1):115-23. PubMed ID: 17608783 [TBL] [Abstract][Full Text] [Related]
13. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. Liu D; Ghosh D; Lin X BMC Bioinformatics; 2008 Jun; 9():292. PubMed ID: 18577223 [TBL] [Abstract][Full Text] [Related]
14. Functional form estimation using oblique projection matrices for LS-SVM regression models. Caicedo A; Varon C; Van Huffel S; Suykens JAK PLoS One; 2019; 14(6):e0217967. PubMed ID: 31173619 [TBL] [Abstract][Full Text] [Related]
15. Gaussian processes for machine learning. Seeger M Int J Neural Syst; 2004 Apr; 14(2):69-106. PubMed ID: 15112367 [TBL] [Abstract][Full Text] [Related]
16. Probability density estimation with tunable kernels using orthogonal forward regression. Chen S; Hong X; Harris CJ IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):1101-14. PubMed ID: 20007052 [TBL] [Abstract][Full Text] [Related]
17. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Liu D; Lin X; Ghosh D Biometrics; 2007 Dec; 63(4):1079-88. PubMed ID: 18078480 [TBL] [Abstract][Full Text] [Related]
18. Kernel-based least squares policy iteration for reinforcement learning. Xu X; Hu D; Lu X IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655 [TBL] [Abstract][Full Text] [Related]
19. Identification of partially linear structure in additive models with an application to gene expression prediction from sequences. Lian H; Chen X; Yang JY Biometrics; 2012 Jun; 68(2):437-45. PubMed ID: 21950383 [TBL] [Abstract][Full Text] [Related]
20. Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure. Li Y; Nan B; Zhu J Biometrics; 2015 Jun; 71(2):354-63. PubMed ID: 25732839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]