These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 27077333)

  • 1. 3D printing of versatile reactionware for chemical synthesis.
    Kitson PJ; Glatzel S; Chen W; Lin CG; Song YF; Cronin L
    Nat Protoc; 2016 May; 11(5):920-36. PubMed ID: 27077333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated 3D-printed reactionware for chemical synthesis and analysis.
    Symes MD; Kitson PJ; Yan J; Richmond CJ; Cooper GJ; Bowman RW; Vilbrandt T; Cronin L
    Nat Chem; 2012 Apr; 4(5):349-54. PubMed ID: 22522253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals.
    Kitson PJ; Marie G; Francoia JP; Zalesskiy SS; Sigerson RC; Mathieson JS; Cronin L
    Science; 2018 Jan; 359(6373):314-319. PubMed ID: 29348235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up.
    Kitson PJ; Marshall RJ; Long D; Forgan RS; Cronin L
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12723-8. PubMed ID: 25079230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The recent development and applications of fluidic channels by 3D printing.
    Zhou Y
    J Biomed Sci; 2017 Oct; 24(1):80. PubMed ID: 29047370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Configurable 3D-Printed millifluidic and microfluidic 'lab on a chip' reactionware devices.
    Kitson PJ; Rosnes MH; Sans V; Dragone V; Cronin L
    Lab Chip; 2012 Sep; 12(18):3267-71. PubMed ID: 22875258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the angle of acuteness of additive manufactured models and the direction of printing on the dimensional fidelity: clinical implications.
    Ide Y; Nayar S; Logan H; Gallagher B; Wolfaardt J
    Odontology; 2017 Jan; 105(1):108-115. PubMed ID: 26995273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of fused deposition modeling 3D printers for pharmaceutical and medical applications.
    Feuerbach T; Kock S; Thommes M
    Pharm Dev Technol; 2018 Dec; 23(10):1136-1145. PubMed ID: 29938558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols.
    Stefano JS; Kalinke C; da Rocha RG; Rocha DP; da Silva VAOP; Bonacin JA; Angnes L; Richter EM; Janegitz BC; Muñoz RAA
    Anal Chem; 2022 May; 94(17):6417-6429. PubMed ID: 35348329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digitizing Chemical Synthesis in 3D Printed Reactionware.
    Bubliauskas A; Blair DJ; Powell-Davies H; Kitson PJ; Burke MD; Cronin L
    Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202116108. PubMed ID: 35257447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional printing of X-ray computed tomography datasets with multiple materials using open-source data processing.
    Sander IM; McGoldrick MT; Helms MN; Betts A; van Avermaete A; Owers E; Doney E; Liepert T; Niebur G; Liepert D; Leevy WM
    Anat Sci Educ; 2017 Jul; 10(4):383-391. PubMed ID: 28231405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications.
    Griffin M; Castro N; Bas O; Saifzadeh S; Butler P; Hutmacher DW
    Tissue Eng Part B Rev; 2020 Jun; 26(3):272-283. PubMed ID: 32089089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery.
    Long J; Gholizadeh H; Lu J; Bunt C; Seyfoddin A
    Curr Pharm Des; 2017; 23(3):433-439. PubMed ID: 27784251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-Portable Solar-Powered 3D Printers for Onsite Manufacturing of Medical Resources.
    Wong JY
    Aerosp Med Hum Perform; 2015 Sep; 86(9):830-4. PubMed ID: 26388092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.
    Gür Y
    Mol Cell Biomech; 2014 Dec; 11(4):249-58. PubMed ID: 26336695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FDM 3D printing of modified drug-delivery systems using hot melt extrusion: a new approach for individualized therapy.
    Cunha-Filho M; Araújo MR; Gelfuso GM; Gratieri T
    Ther Deliv; 2017 Nov; 8(11):957-966. PubMed ID: 29061104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing Microfluidic Sensing Devices Using 3D Printing.
    Rusling JF
    ACS Sens; 2018 Mar; 3(3):522-526. PubMed ID: 29490458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital Control of Multistep Hydrothermal Synthesis by Using 3D Printed Reactionware for the Synthesis of Metal-Organic Frameworks.
    Lin CG; Zhou W; Xiong XT; Xuan W; Kitson PJ; Long DL; Chen W; Song YF; Cronin L
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16716-16720. PubMed ID: 30370977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extrusion-Based 3D Printing of Ceramic Pastes: Mathematical Modeling and In Situ Shaping Retention Approach.
    Hu F; Mikolajczyk T; Pimenov DY; Gupta MK
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33670904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.