BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 27077531)

  • 1. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells.
    Møller HD; Bojsen RK; Tachibana C; Parsons L; Botstein D; Regenberg B
    J Vis Exp; 2016 Apr; (110):e54239 |. PubMed ID: 27077531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrachromosomal circular DNA is common in yeast.
    Møller HD; Parsons L; Jørgensen TS; Botstein D; Regenberg B
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):E3114-22. PubMed ID: 26038577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circle-Seq: Isolation and Sequencing of Chromosome-Derived Circular DNA Elements in Cells.
    Møller HD
    Methods Mol Biol; 2020; 2119():165-181. PubMed ID: 31989524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Extrachromosomal Circular Forms of Active Transposable Elements Using Mobilome-Seq.
    Lanciano S; Zhang P; Llauro C; Mirouze M
    Methods Mol Biol; 2021; 2250():87-93. PubMed ID: 33900594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae.
    Møller HD; Larsen CE; Parsons L; Hansen AJ; Regenberg B; Mourier T
    G3 (Bethesda); 2015 Dec; 6(2):453-62. PubMed ID: 26681518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation.
    Galeote V; Bigey F; Beyne E; Novo M; Legras JL; Casaregola S; Dequin S
    PLoS One; 2011 Mar; 6(3):e17872. PubMed ID: 21423766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ECCsplorer: a pipeline to detect extrachromosomal circular DNA (eccDNA) from next-generation sequencing data.
    Mann L; Seibt KM; Weber B; Heitkam T
    BMC Bioinformatics; 2022 Jan; 23(1):40. PubMed ID: 35030991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila.
    Cohen S; Yacobi K; Segal D
    Genome Res; 2003 Jun; 13(6A):1133-45. PubMed ID: 12799349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification, full-length sequencing and genomic origin mapping of eccDNA.
    Wang Y; Wang M; Zhang Y
    Nat Protoc; 2023 Mar; 18(3):683-699. PubMed ID: 36517607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CReSIL: accurate identification of extrachromosomal circular DNA from long-read sequences.
    Wanchai V; Jenjaroenpun P; Leangapichart T; Arrey G; Burnham CM; Tümmler MC; Delgado-Calle J; Regenberg B; Nookaew I
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36198068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrachromosomal circular DNA in eukaryotes: possible involvement in the plasticity of tandem repeats.
    Cohen S; Segal D
    Cytogenet Genome Res; 2009; 124(3-4):327-38. PubMed ID: 19556784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs.
    Lv W; Pan X; Han P; Wang Z; Feng W; Xing X; Wang Q; Qu K; Zeng Y; Zhang C; Xu Z; Li Y; Zheng T; Lin L; Liu C; Liu X; Li H; Henriksen RA; Bolund L; Lin L; Jin X; Yang H; Zhang X; Yin T; Regenberg B; He F; Luo Y
    Clin Transl Med; 2022 Apr; 12(4):e817. PubMed ID: 35474296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased serum extrachromosomal circular DNA SORBS1
    Kong X; Wan SJ; Chen TB; Jiang L; Xing YJ; Bai YP; Hua Q; Yao XM; Zhao YL; Zhang HM; Wang DG; Su Q; Lv K
    Cell Mol Biol Lett; 2024 Jan; 29(1):12. PubMed ID: 38212723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription-induced formation of extrachromosomal DNA during yeast ageing.
    Hull RM; King M; Pizza G; Krueger F; Vergara X; Houseley J
    PLoS Biol; 2019 Dec; 17(12):e3000471. PubMed ID: 31794573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Random Distribution of Chromosome-Derived Circular DNA in the Condensed Genome of Pigeons and the Larger, More Repeat-Rich Human Genome.
    Møller HD; Ramos-Madrigal J; Prada-Luengo I; Gilbert MTP; Regenberg B
    Genome Biol Evol; 2020 Jan; 12(1):3762-3777. PubMed ID: 31882998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of extrachromosomal DNA rings in Saccharomyces cerevisiae using site-specific recombination.
    Gartenberg MR
    Methods Mol Biol; 1999; 94():125-33. PubMed ID: 12844868
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of Extrachromosomal Circular DNA in Hop via Rolling Circle Amplification.
    Diaz-Lara A; Gent DH; Martin RR
    Cytogenet Genome Res; 2016; 148(2-3):237-40. PubMed ID: 27160259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unifying model for extrachromosomal circular DNA load in eukaryotic cells.
    Arrey G; Keating ST; Regenberg B
    Semin Cell Dev Biol; 2022 Aug; 128():40-50. PubMed ID: 35292190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The adaptive potential of circular DNA accumulation in ageing cells.
    Hull RM; Houseley J
    Curr Genet; 2020 Oct; 66(5):889-894. PubMed ID: 32296868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid evolution of recombinant Saccharomyces cerevisiae for Xylose fermentation through formation of extra-chromosomal circular DNA.
    Demeke MM; Foulquié-Moreno MR; Dumortier F; Thevelein JM
    PLoS Genet; 2015 Mar; 11(3):e1005010. PubMed ID: 25738959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.