BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 27078085)

  • 1. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.
    Lohr TL; Li Z; Marks TJ
    Acc Chem Res; 2016 May; 49(5):824-34. PubMed ID: 27078085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of High Performance Heterogeneous Catalysts for Selective Cleavage of C-O and C-C Bonds of Biomass-Derived Oxygenates.
    Mizugaki T; Kaneda K
    Chem Rec; 2019 Jul; 19(7):1179-1198. PubMed ID: 30230196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid ether and alcohol C-O bond hydrogenolysis catalyzed by tandem high-valent metal triflate + supported Pd catalysts.
    Li Z; Assary RS; Atesin AC; Curtiss LA; Marks TJ
    J Am Chem Soc; 2014 Jan; 136(1):104-7. PubMed ID: 24354599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Etheric C-O bond hydrogenolysis using a tandem lanthanide triflate/supported palladium nanoparticle catalyst system.
    Atesin AC; Ray NA; Stair PC; Marks TJ
    J Am Chem Soc; 2012 Sep; 134(36):14682-5. PubMed ID: 22889142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic routes to fuels from C
    Wang S; Agirrezabal-Telleria I; Bhan A; Simonetti D; Takanabe K; Iglesia E
    Faraday Discuss; 2017 Apr; 197():9-39. PubMed ID: 28300265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Cleavage of the C-O Bonds in Lignin and Lignin Model Compounds by Metal Triflate Catalysts.
    Zhu R; Mao C; Gao F; Guo Z; Li M; Xin Y; Gu Z; Zhang L
    ChemSusChem; 2024 Feb; 17(4):e202301743. PubMed ID: 38206879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective, nickel-catalyzed hydrogenolysis of aryl ethers.
    Sergeev AG; Hartwig JF
    Science; 2011 Apr; 332(6028):439-43. PubMed ID: 21512027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Ni N-heterocyclic carbene catalyst for C-O bond hydrogenolysis of diphenyl ether: a density functional study.
    Sawatlon B; Wititsuwannakul T; Tantirungrotechai Y; Surawatanawong P
    Dalton Trans; 2014 Dec; 43(48):18123-33. PubMed ID: 25355042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Conversion of Lignin into Valuable Chemicals: Full Utilization of Aromatic Nuclei and Side Chains.
    Zhang B; Meng Q; Liu H; Han B
    Acc Chem Res; 2023 Dec; 56(24):3558-3571. PubMed ID: 38029298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges.
    Jin X; Yin B; Xia Q; Fang T; Shen J; Kuang L; Yang C
    ChemSusChem; 2019 Jan; 12(1):71-92. PubMed ID: 30240143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ni-catalyzed cleavage of aryl ethers in the aqueous phase.
    He J; Zhao C; Lercher JA
    J Am Chem Soc; 2012 Dec; 134(51):20768-75. PubMed ID: 23190332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water.
    Yamaguchi A; Mimura N; Shirai M; Sato O
    Sci Rep; 2017 Apr; 7():46172. PubMed ID: 28387304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.
    Wang H; Wang H; Kuhn E; Tucker MP; Yang B
    ChemSusChem; 2018 Jan; 11(1):285-291. PubMed ID: 29136337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.
    Hanson SK; Baker RT
    Acc Chem Res; 2015 Jul; 48(7):2037-48. PubMed ID: 26151603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Mechanisms Mapped in Aryl Alkyl Ether Cleavage via Aqueous Electrocatalytic Hydrogenation over Skeletal Nickel.
    Zhou Y; Klinger GE; Hegg EL; Saffron CM; Jackson JE
    J Am Chem Soc; 2020 Feb; 142(8):4037-4050. PubMed ID: 32017546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin Compounds to Monoaromatics: Selective Cleavage of C-O Bonds over a Brominated Ruthenium Catalyst.
    Wu D; Wang Q; Safonova OV; Peron DV; Zhou W; Yan Z; Marinova M; Khodakov AY; Ordomsky VV
    Angew Chem Int Ed Engl; 2021 May; 60(22):12513-12523. PubMed ID: 33730419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.
    De S; Saha B; Luque R
    Bioresour Technol; 2015 Feb; 178():108-118. PubMed ID: 25443804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models.
    Zeng H; Cao D; Qiu Z; Li CJ
    Angew Chem Int Ed Engl; 2018 Mar; 57(14):3752-3757. PubMed ID: 29384588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.