BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27078234)

  • 21. A closed translocation channel in the substrate-free AAA+ ClpXP protease diminishes rogue degradation.
    Ghanbarpour A; Cohen SE; Fei X; Kinman LF; Bell TA; Zhang JJ; Baker TA; Davis JH; Sauer RT
    Nat Commun; 2023 Nov; 14(1):7281. PubMed ID: 37949857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ClpXP and ClpAP control the Escherichia coli division protein ZapC by proteolysis.
    Buczek MS; Cardenas Arevalo AL; Janakiraman A
    Microbiology (Reading); 2016 Jun; 162(6):909-920. PubMed ID: 26978224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer.
    Wah DA; Levchenko I; Baker TA; Sauer RT
    Chem Biol; 2002 Nov; 9(11):1237-45. PubMed ID: 12445774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP.
    Griffith KL; Grossman AD
    Mol Microbiol; 2008 Nov; 70(4):1012-25. PubMed ID: 18811726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering an SspB-mediated degron for novel controllable protein degradation.
    Lei Y; Chen W; Xiang L; Wu J; Zhen Z; Jin JM; Liang C; Tang SY
    Metab Eng; 2022 Nov; 74():150-159. PubMed ID: 36328294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis.
    Flynn JM; Levchenko I; Seidel M; Wickner SH; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10584-9. PubMed ID: 11535833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Knots can impair protein degradation by ATP-dependent proteases.
    San Martín Á; Rodriguez-Aliaga P; Molina JA; Martin A; Bustamante C; Baez M
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9864-9869. PubMed ID: 28847957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Examination of the polypeptide substrate specificity for Escherichia coli ClpA.
    Li T; Lucius AL
    Biochemistry; 2013 Jul; 52(29):4941-54. PubMed ID: 23773038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Feb; 15(2):139-45. PubMed ID: 18223658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease.
    Nager AR; Baker TA; Sauer RT
    J Mol Biol; 2011 Oct; 413(1):4-16. PubMed ID: 21821046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP.
    Rodriguez-Aliaga P; Ramirez L; Kim F; Bustamante C; Martin A
    Nat Struct Mol Biol; 2016 Nov; 23(11):974-981. PubMed ID: 27669037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of a conserved residue R780 in Escherichia coli multidrug transporter AcrB.
    Yu L; Lu W; Ye C; Wang Z; Zhong M; Chai Q; Sheetz M; Wei Y
    Biochemistry; 2013 Oct; 52(39):6790-6. PubMed ID: 24007302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crosstalk between Diverse Synthetic Protein Degradation Tags in Escherichia coli.
    Butzin NC; Mather WH
    ACS Synth Biol; 2018 Jan; 7(1):54-62. PubMed ID: 29193958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation.
    Kenniston JA; Burton RE; Siddiqui SM; Baker TA; Sauer RT
    J Struct Biol; 2004; 146(1-2):130-40. PubMed ID: 15037244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Altered specificity of a AAA+ protease.
    Farrell CM; Baker TA; Sauer RT
    Mol Cell; 2007 Jan; 25(1):161-6. PubMed ID: 17218279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Resolution Crystallographic Analysis of AcrB Using Designed Ankyrin Repeat Proteins (DARPins).
    Tam HK; Malviya VN; Pos KM
    Methods Mol Biol; 2018; 1700():3-24. PubMed ID: 29177822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A split protease-E. coli ClpXP system quantifies protein-protein interactions in Escherichia coli cells.
    Wang S; Zhang F; Mei M; Wang T; Yun Y; Yang S; Zhang G; Yi L
    Commun Biol; 2021 Jul; 4(1):841. PubMed ID: 34230602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX.
    Ling L; Montaño SP; Sauer RT; Rice PA; Baker TA
    J Mol Biol; 2015 Sep; 427(18):2966-82. PubMed ID: 25797169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump.
    Du D; Voss J; Wang Z; Chiu W; Luisi BF
    Biol Chem; 2015 Sep; 396(9-10):1073-82. PubMed ID: 25803077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.