These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27078234)

  • 41. The structure of the efflux pump AcrB in complex with bile acid.
    Drew D; Klepsch MM; Newstead S; Flaig R; De Gier JW; Iwata S; Beis K
    Mol Membr Biol; 2008 Dec; 25(8):677-82. PubMed ID: 19023693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease.
    Bohn C; Binet E; Bouloc P
    Mol Genet Genomics; 2002 Jan; 266(5):827-31. PubMed ID: 11810257
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and substrate specificity of an SspB ortholog: design implications for AAA+ adaptors.
    Chien P; Grant RA; Sauer RT; Baker TA
    Structure; 2007 Oct; 15(10):1296-305. PubMed ID: 17937918
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural basis of degradation signal recognition by SspB, a specificity-enhancing factor for the ClpXP proteolytic machine.
    Song HK; Eck MJ
    Mol Cell; 2003 Jul; 12(1):75-86. PubMed ID: 12887894
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel packing arrangement of AcrB in the lipid bilayer membrane.
    Ly K; Bartho JD; Eicher T; Pos KM; Mitra AK
    FEBS Lett; 2014 Dec; 588(24):4776-83. PubMed ID: 25451234
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteolysis: Adaptor, adaptor, catch me a catch.
    Ades SE
    Curr Biol; 2004 Nov; 14(21):R924-6. PubMed ID: 15530384
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The AAA+ protease ClpXP can easily degrade a 3
    Sivertsson EM; Jackson SE; Itzhaki LS
    Sci Rep; 2019 Feb; 9(1):2421. PubMed ID: 30787316
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Barrel-shaped ClpP Proteases Display Attenuated Cleavage Specificities.
    Gersch M; Stahl M; Poreba M; Dahmen M; Dziedzic A; Drag M; Sieber SA
    ACS Chem Biol; 2016 Feb; 11(2):389-99. PubMed ID: 26606371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation.
    Park E; Lee JW; Yoo HM; Ha BH; An JY; Jeon YJ; Seol JH; Eom SH; Chung CH
    J Mol Biol; 2013 Aug; 425(16):2940-54. PubMed ID: 23707406
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine.
    Truscott KN; Bezawork-Geleta A; Dougan DA
    IUBMB Life; 2011 Nov; 63(11):955-63. PubMed ID: 22031494
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears.
    Sen M; Maillard RA; Nyquist K; Rodriguez-Aliaga P; Pressé S; Martin A; Bustamante C
    Cell; 2013 Oct; 155(3):636-646. PubMed ID: 24243020
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ClpXP-dependent proteolysis of FNR upon loss of its O2-sensing [4Fe-4S] cluster.
    Mettert EL; Kiley PJ
    J Mol Biol; 2005 Nov; 354(2):220-32. PubMed ID: 16243354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ClpXP degrades SsrA-tagged proteins in Streptococcus pneumoniae.
    Ahlawat S; Morrison DA
    J Bacteriol; 2009 Apr; 191(8):2894-8. PubMed ID: 19218384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism.
    Seeger MA; Schiefner A; Eicher T; Verrey F; Diederichs K; Pos KM
    Science; 2006 Sep; 313(5791):1295-8. PubMed ID: 16946072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism.
    Murakami S; Nakashima R; Yamashita E; Matsumoto T; Yamaguchi A
    Nature; 2006 Sep; 443(7108):173-9. PubMed ID: 16915237
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computer simulations suggest direct and stable tip to tip interaction between the outer membrane channel TolC and the isolated docking domain of the multidrug RND efflux transporter AcrB.
    Schmidt TH; Raunest M; Fischer N; Reith D; Kandt C
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1419-26. PubMed ID: 27045078
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation.
    Hinnerwisch J; Fenton WA; Furtak KJ; Farr GW; Horwich AL
    Cell; 2005 Jul; 121(7):1029-41. PubMed ID: 15989953
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determining Ligand Path Through a Major Drug Transporter, AcrB, in Escherichia coli.
    Husain F; Nikaido H
    Methods Mol Biol; 2018; 1700():167-175. PubMed ID: 29177831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential degradation of variant medium-chain acyl-CoA dehydrogenase by the protein quality control proteases Lon and ClpXP.
    Hansen J; Gregersen N; Bross P
    Biochem Biophys Res Commun; 2005 Aug; 333(4):1160-70. PubMed ID: 15978546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering uroporphyrinogen III methyltransferase as a red fluorescent reporter in E. coli.
    Wang Z; Li S; Li J; Li J; Rong L; Cheng B; Fan J
    Enzyme Microb Technol; 2014; 61-62():1-6. PubMed ID: 24910329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.