These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 27078349)

  • 1. Manipulating localized matter waves in multicomponent Bose-Einstein condensates.
    Manikandan K; Muruganandam P; Senthilvelan M; Lakshmanan M
    Phys Rev E; 2016 Mar; 93(3):032212. PubMed ID: 27078349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating matter rogue waves and breathers in Bose-Einstein condensates.
    Manikandan K; Muruganandam P; Senthilvelan M; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062905. PubMed ID: 25615162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matter rogue waves for the three-component Gross-Pitaevskii equations in the spinor Bose-Einstein condensates.
    Sun WR; Wang L
    Proc Math Phys Eng Sci; 2018 Jan; 474(2209):20170276. PubMed ID: 29434501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling rogue waves in inhomogeneous Bose-Einstein condensates.
    Loomba S; Kaur H; Gupta R; Kumar CN; Raju TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052915. PubMed ID: 25353869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-autonomous multi-rogue waves for spin-1 coupled nonlinear Gross-Pitaevskii equation and management by external potentials.
    Li L; Yu F
    Sci Rep; 2017 Sep; 7(1):10638. PubMed ID: 28878276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matter rogue waves in an F=1 spinor Bose-Einstein condensate.
    Qin Z; Mu G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036601. PubMed ID: 23031039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-order rogue wave and mixed interaction patterns for the three-component Gross-Pitaevskii equations in F=1 spinor Bose-Einstein condensates.
    Wen XY; Lin Z; Wang DS
    Phys Rev E; 2024 Apr; 109(4-1):044215. PubMed ID: 38755818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonautonomous matter waves in a spin-1 Bose-Einstein condensate.
    Shen YJ; Gao YT; Zuo DW; Sun YH; Feng YJ; Xue L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062915. PubMed ID: 25019859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taming rogue waves in vector Bose-Einstein condensates.
    Vinayagam PS; Radha R; Porsezian K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042906. PubMed ID: 24229248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector rogue waves and dark-bright boomeronic solitons in autonomous and nonautonomous settings.
    Mareeswaran RB; Charalampidis EG; Kanna T; Kevrekidis PG; Frantzeskakis DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042912. PubMed ID: 25375572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable nonautonomous localized waves and dynamics for a quasi-1D Gross-Pitaevskii equation in Bose-Einstein condensations with attractive interaction.
    Wang H; Yang H; Tian Y; Liu W
    Chaos; 2024 May; 34(5):. PubMed ID: 38722729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Management of matter-wave solitons in Bose-Einstein condensates with time-dependent atomic scattering length in a time-dependent parabolic complex potential.
    Kengne E; Liu WM
    Phys Rev E; 2018 Jul; 98(1-1):012204. PubMed ID: 30110784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation, propagation, and excitation of matter solitons and rogue waves in chiral BECs with a current nonlinearity trapped in external potentials.
    Song J; Yan Z
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37870999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves.
    Baronio F; Degasperis A; Conforti M; Wabnitz S
    Phys Rev Lett; 2012 Jul; 109(4):044102. PubMed ID: 23006091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations.
    Zhang G; Yan Z; Wen XY; Chen Y
    Phys Rev E; 2017 Apr; 95(4-1):042201. PubMed ID: 28505714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional rogue waves in nonstationary parabolic potentials.
    Yan Z; Konotop VV; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036610. PubMed ID: 21230206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solitons and rogue waves in spinor Bose-Einstein condensates.
    Li S; Prinari B; Biondini G
    Phys Rev E; 2018 Feb; 97(2-1):022221. PubMed ID: 29548137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rogue waves in a two-component Manakov system with variable coefficients and an external potential.
    Zhong WP; Belić M; Malomed BA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053201. PubMed ID: 26651808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: application to two-component Bose-Einstein condensates.
    Brazhnyi VA; Konotop VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026616. PubMed ID: 16196744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rogue-pair and dark-bright-rogue waves of the coupled nonlinear Schrödinger equations from inhomogeneous femtosecond optical fibers.
    Yomba E; Zakeri GA
    Chaos; 2016 Aug; 26(8):083115. PubMed ID: 27586611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.