These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27078359)

  • 1. Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids.
    Coletta T; Jacquod P
    Phys Rev E; 2016 Mar; 93(3):032222. PubMed ID: 27078359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Braess' Paradox in power grids.
    Schäfer B; Pesch T; Manik D; Gollenstede J; Lin G; Beck HP; Witthaut D; Timme M
    Nat Commun; 2022 Sep; 13(1):5396. PubMed ID: 36104335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of network topology on synchrony of oscillatory power grids.
    Rohden M; Sorge A; Witthaut D; Timme M
    Chaos; 2014 Mar; 24(1):013123. PubMed ID: 24697385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new scenario for Braess's paradox in power grids.
    Khramenkov VA; Dmitrichev AS; Nekorkin VI
    Chaos; 2022 Nov; 32(11):113116. PubMed ID: 36456330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities.
    Tyloo M; Pagnier L; Jacquod P
    Sci Adv; 2019 Nov; 5(11):eaaw8359. PubMed ID: 31803830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of cyclic power grids: Equilibria and stability of the synchronous state.
    Xi K; Dubbeldam JL; Lin HX
    Chaos; 2017 Jan; 27(1):013109. PubMed ID: 28147501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistability and anomalies in oscillator models of lossy power grids.
    Delabays R; Jafarpour S; Bullo F
    Nat Commun; 2022 Sep; 13(1):5238. PubMed ID: 36068214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and control of power grids with diluted network topology.
    Tumash L; Olmi S; Schöll E
    Chaos; 2019 Dec; 29(12):123105. PubMed ID: 31893638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Braess paradox in a network of totally asymmetric exclusion processes.
    Bittihn S; Schadschneider A
    Phys Rev E; 2016 Dec; 94(6-1):062312. PubMed ID: 28085325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistability in lossy power grids and oscillator networks.
    Balestra C; Kaiser F; Manik D; Witthaut D
    Chaos; 2019 Dec; 29(12):123119. PubMed ID: 31893663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new transport phenomenon in nanostructures: a mesoscopic analog of the Braess paradox encountered in road networks.
    Pala M; Sellier H; Hackens B; Martins F; Bayot V; Huant S
    Nanoscale Res Lett; 2012 Aug; 7(1):472. PubMed ID: 22913510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Braess's paradox of power grids using graph neural networks.
    Zou Y; Zhang H; Wang H; Hu J
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38252784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal Braess paradox in open quantum dots.
    Barbosa AL; Bazeia D; Ramos JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042915. PubMed ID: 25375575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power grid stability under perturbation of single nodes: Effects of heterogeneity and internal nodes.
    Wolff MF; Lind PG; Maass P
    Chaos; 2018 Oct; 28(10):103120. PubMed ID: 30384670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of synchrony against local intermittent fluctuations in tree-like power grids.
    Auer S; Hellmann F; Krause M; Kurths J
    Chaos; 2017 Dec; 27(12):127003. PubMed ID: 29289040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delocalization of disturbances and the stability of ac electricity grids.
    Kettemann S
    Phys Rev E; 2016 Dec; 94(6-1):062311. PubMed ID: 28085307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport inefficiency in branched-out mesoscopic networks: an analog of the Braess paradox.
    Pala MG; Baltazar S; Liu P; Sellier H; Hackens B; Martins F; Bayot V; Wallart X; Desplanque L; Huant S
    Phys Rev Lett; 2012 Feb; 108(7):076802. PubMed ID: 22401236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control and prediction for blackouts caused by frequency collapse in smart grids.
    Wang C; Grebogi C; Baptista MS
    Chaos; 2016 Sep; 26(9):093119. PubMed ID: 27781449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-organized synchronization in decentralized power grids.
    Rohden M; Sorge A; Timme M; Witthaut D
    Phys Rev Lett; 2012 Aug; 109(6):064101. PubMed ID: 23006269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mean-field approach for frequency synchronization in complex networks of two oscillator types.
    Wieland S; Malerba SB; Aumaitre S; Bercegol H
    Phys Rev E; 2018 May; 97(5-1):052310. PubMed ID: 29906922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.