These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27078360)

  • 1. Locating the source of diffusion in complex networks by time-reversal backward spreading.
    Shen Z; Cao S; Wang WX; Di Z; Stanley HE
    Phys Rev E; 2016 Mar; 93(3):032301. PubMed ID: 27078360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal localization of diffusion sources in complex networks.
    Hu ZL; Han X; Lai YC; Wang WX
    R Soc Open Sci; 2017 Apr; 4(4):170091. PubMed ID: 28484635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian estimation of the dynamics of pandemic (H1N1) 2009 influenza transmission in Queensland: A space-time SIR-based model.
    Huang X; Clements AC; Williams G; Mengersen K; Tong S; Hu W
    Environ Res; 2016 Apr; 146():308-14. PubMed ID: 26799511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locating the source of diffusion in large-scale networks.
    Pinto PC; Thiran P; Vetterli M
    Phys Rev Lett; 2012 Aug; 109(6):068702. PubMed ID: 23006310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locating multiple diffusion sources in time varying networks from sparse observations.
    Hu ZL; Shen Z; Cao S; Podobnik B; Yang H; Wang WX; Lai YC
    Sci Rep; 2018 Feb; 8(1):2685. PubMed ID: 29422535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surveillance of influenza A and the pandemic influenza A (H1N1) 2009 in sewage and surface water in the Netherlands.
    Heijnen L; Medema G
    J Water Health; 2011 Sep; 9(3):434-42. PubMed ID: 21976191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in the structure and function of pandemic A/H1N1/2009 influenza virus HA protein].
    Zhang WQ; Song SX; Wang TZ
    Bing Du Xue Bao; 2012 Jun; 28(4):444-52. PubMed ID: 22978172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary vaccination dilemma in complex networks.
    Cardillo A; Reyes-Suárez C; Naranjo F; Gómez-Gardeñes J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032803. PubMed ID: 24125308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing propagation networks with natural diversity and identifying hidden sources.
    Shen Z; Wang WX; Fan Y; Di Z; Lai YC
    Nat Commun; 2014 Jul; 5():4323. PubMed ID: 25014310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atypical viral dynamics from transport through popular places.
    Manrique PD; Xu C; Hui PM; Johnson NF
    Phys Rev E; 2016 Aug; 94(2-1):022304. PubMed ID: 27627314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of scaling emergence in large-scale spatial epidemic spreading.
    Wang L; Li X; Zhang YQ; Zhang Y; Zhang K
    PLoS One; 2011; 6(7):e21197. PubMed ID: 21747932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of school closure on incidence of pandemic influenza in Alberta, Canada.
    Earn DJ; He D; Loeb MB; Fonseca K; Lee BE; Dushoff J
    Ann Intern Med; 2012 Feb; 156(3):173-81. PubMed ID: 22312137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spatial-temporal transmission model and early intervention policies of 2009 A/H1N1 influenza in South Korea.
    Lee J; Jung E
    J Theor Biol; 2015 Sep; 380():60-73. PubMed ID: 25981631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the initial transmission dynamics of influenza A H1N1 in Guangdong Province, China.
    Tan X; Yuan L; Zhou J; Zheng Y; Yang F
    Int J Infect Dis; 2013 Jul; 17(7):e479-84. PubMed ID: 23276487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capturing the time-varying drivers of an epidemic using stochastic dynamical systems.
    Dureau J; Kalogeropoulos K; Baguelin M
    Biostatistics; 2013 Jul; 14(3):541-55. PubMed ID: 23292757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion in Colocation Contact Networks: The Impact of Nodal Spatiotemporal Dynamics.
    Thomas B; Jurdak R; Zhao K; Atkinson I
    PLoS One; 2016; 11(8):e0152624. PubMed ID: 27501240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating epidemic parameters: Application to H1N1 pandemic data.
    Schwartz EJ; Choi B; Rempala GA
    Math Biosci; 2015 Dec; 270(Pt B):198-203. PubMed ID: 25843353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the epidemic waves of AH1N1/09 influenza around the world.
    González-Parra G; Arenas AJ; Aranda DF; Segovia L
    Spat Spatiotemporal Epidemiol; 2011 Dec; 2(4):219-26. PubMed ID: 22748221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of changing host immunity on 1918-19 pandemic dynamics.
    Bolton KJ; McCaw JM; McVernon J; Mathews JD
    Epidemics; 2014 Sep; 8():18-27. PubMed ID: 25240900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influenza A (H1N1) 2009 surveillance on Mayotte island: the challenge of setting up a new system facing the pandemic].
    Lernout T; Durquety E; Chollet P; Helleisen F; Javaudin G; Lajoinie G; Filleul L
    Bull Soc Pathol Exot; 2011 May; 104(2):114-8. PubMed ID: 21181329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.