These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27078410)

  • 1. Dynamic evolution process of multilayer core-shell microstructures within containerlessly solidifying Fe(50)Sn(50) immiscible alloy.
    Wang WL; Wu YH; Li LH; Geng DL; Wei B
    Phys Rev E; 2016 Mar; 93(3):032603. PubMed ID: 27078410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy.
    Wang WL; Wu YH; Li LH; Zhai W; Zhang XM; Wei B
    Sci Rep; 2015 Nov; 5():16335. PubMed ID: 26552711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigations and phase-field simulations of triple-phase-separation kinetics within liquid ternary Co-Cu-Pb immiscible alloys.
    Wu YH; Wang WL; Yan N; Wei B
    Phys Rev E; 2017 May; 95(5-1):052111. PubMed ID: 28618464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of immiscible alloy powders with egg-type microstructure.
    Wang CP; Liu XJ; Ohnuma I; Kainuma R; Ishida K
    Science; 2002 Aug; 297(5583):990-3. PubMed ID: 12169728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of solutal Marangoni convection on motion, coarsening, and coalescence of droplets in a monotectic system.
    Wang F; Choudhury A; Selzer M; Mukherjee R; Nestler B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066318. PubMed ID: 23368049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic modulation of phase separation and corrosion resistance for ternary Cu-Sn-Bi immiscible alloy.
    Liu JM; Wu WH; Zhai W; Wei B
    Ultrason Sonochem; 2019 Jun; 54():281-289. PubMed ID: 30712857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of magnetic nanocomposites and alloys from platinum-iron oxide core-shell nanoparticles.
    Teng X; Yang H
    Nanotechnology; 2005 Jul; 16(7):S554-61. PubMed ID: 21727477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three orthogonal ultrasounds fabricate uniform ternary Al-Sn-Cu immiscible alloy.
    Zhai W; Wang BJ; Liu HM; Hu L; Wei B
    Sci Rep; 2016 Nov; 6():36718. PubMed ID: 27841283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Simulation of Droplets Behavior of Cu-Pb Immiscible Alloys Solidifying under Magnetic Field.
    Zhang L; Man T; Huang M; Gao J; Zuo X; Wang E
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28846655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting microstructures in polymer blends under two-step quench in two-dimensional space.
    Li YC; Shi RP; Wang CP; Liu XJ; Wang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041502. PubMed ID: 21599164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of microgravity on the solidification of aluminum-bismuth-tin immiscible alloys.
    Jiang H; Li S; Zhang L; He J; Zhao J
    NPJ Microgravity; 2019; 5():26. PubMed ID: 31754626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State.
    Geng D; Yan N; Xie W; Lü Y; Wei B
    Adv Mater; 2023 Dec; 35(50):e2206464. PubMed ID: 36271516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution in the nanoscale diffusion process: a Au-Sn bimetallic system.
    Yu K; Yao T; Pan Z; Wei S; Xie Y
    Dalton Trans; 2009 Dec; (46):10353-8. PubMed ID: 19921072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology-Control Synthesis of a Core-Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities.
    Zhao B; Zhao W; Shao G; Fan B; Zhang R
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12951-60. PubMed ID: 26018739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition and structure of magnetic high-temperature-phase, stable Fe-Au core-shell nanoparticles with zero-valent bcc Fe core.
    Kamp M; Tymoczko A; Popescu R; Schürmann U; Nadarajah R; Gökce B; Rehbock C; Gerthsen D; Barcikowski S; Kienle L
    Nanoscale Adv; 2020 Sep; 2(9):3912-3920. PubMed ID: 36132793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the stability of AuFe alloy nanoparticles.
    Velasco V; Pohl D; Surrey A; Bonatto-Minella A; Hernando A; Crespo P; Rellinghaus B
    Nanotechnology; 2014 May; 25(21):215703. PubMed ID: 24784895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation.
    Shin YK; Kwak H; Zou C; Vasenkov AV; van Duin AC
    J Phys Chem A; 2012 Dec; 116(49):12163-74. PubMed ID: 23167515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metastable Liquid Properties and Surface Flow Patterns of Ultrahigh Temperature Alloys Explored in Outer Space.
    Wang H; Hu L; Xie W; Chang J; Zheng C; Li M; Wang Q; Liao H; Liu D; Wei B
    Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202400312. PubMed ID: 38306324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys.
    Li X; Lu Z; Fautrelle Y; Gagnoud A; Moreau R; Ren Z
    Sci Rep; 2016 Nov; 6():37872. PubMed ID: 27886265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.