These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 27078422)
41. The sharkskin instability of polymer melt flows. Graham MD Chaos; 1999 Mar; 9(1):154-163. PubMed ID: 12779809 [TBL] [Abstract][Full Text] [Related]
42. Angular redistribution of nonlinear perturbations: a universal feature of nonuniform flows. Horton W; Kim JH; Chagelishvili GD; Bowman JC; Lominadze JG Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066304. PubMed ID: 20866519 [TBL] [Abstract][Full Text] [Related]
43. Linear stability of layered two-phase flows through parallel soft-gel-coated walls. Dinesh B; Pushpavanam S Phys Rev E; 2017 Jul; 96(1-1):013119. PubMed ID: 29347118 [TBL] [Abstract][Full Text] [Related]
44. Activity pulses induce spontaneous flow reversals in viscoelastic environments. Plan ELCVM; Yeomans JM; Doostmohammadi A J R Soc Interface; 2021 Apr; 18(177):20210100. PubMed ID: 33849330 [TBL] [Abstract][Full Text] [Related]
45. Flow of concentrated viscoelastic polymer solutions in porous media: effect of M(W) and concentration on elastic turbulence onset in various geometries. Howe AM; Clarke A; Giernalczyk D Soft Matter; 2015 Aug; 11(32):6419-31. PubMed ID: 26174700 [TBL] [Abstract][Full Text] [Related]
46. Complex spontaneous flows and concentration banding in active polar films. Giomi L; Marchetti MC; Liverpool TB Phys Rev Lett; 2008 Nov; 101(19):198101. PubMed ID: 19113315 [TBL] [Abstract][Full Text] [Related]
47. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations. Schüler D; Alonso S; Torcini A; Bär M Chaos; 2014 Dec; 24(4):043142. PubMed ID: 25554062 [TBL] [Abstract][Full Text] [Related]
48. Langevin dynamics simulations of polymer translocation through nanopores. Huopaniemi I; Luo K; Ala-Nissila T; Ying SC J Chem Phys; 2006 Sep; 125(12):124901. PubMed ID: 17014202 [TBL] [Abstract][Full Text] [Related]
49. Nematic fluctuations and semisoft elasticity in liquid-crystal elastomers. Petelin A; Čopič M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062509. PubMed ID: 23848707 [TBL] [Abstract][Full Text] [Related]
50. Large-scale instability in a sheared nonhelical turbulence: Formation of vortical structures. Elperin T; Golubev I; Kleeorin N; Rogachevskii I Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066310. PubMed ID: 18233920 [TBL] [Abstract][Full Text] [Related]
51. Aspects of linear and nonlinear instabilities leading to transition in pipe and channel flows. Cohen J; Philip J; Ben-Dov G Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):509-27. PubMed ID: 18990659 [TBL] [Abstract][Full Text] [Related]
52. Instability of streaks in pipe flow of shear-thinning fluids. López Carranza SN; Jenny M; Nouar C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023005. PubMed ID: 24032922 [TBL] [Abstract][Full Text] [Related]
53. Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles. Grilli M; Vázquez-Quesada A; Ellero M Phys Rev Lett; 2013 Apr; 110(17):174501. PubMed ID: 23679735 [TBL] [Abstract][Full Text] [Related]
54. Nonlinear dynamics of a chemically-active drop: From steady to chaotic self-propulsion. Morozov M; Michelin S J Chem Phys; 2019 Jan; 150(4):044110. PubMed ID: 30709268 [TBL] [Abstract][Full Text] [Related]
55. Viscous heating and the stability of newtonian and viscoelastic taylor-couette flows. White JM; Muller SJ Phys Rev Lett; 2000 May; 84(22):5130-3. PubMed ID: 10990884 [TBL] [Abstract][Full Text] [Related]
56. Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow. Ji S; Jiang R; Winkler RG; Gompper G J Chem Phys; 2011 Oct; 135(13):134116. PubMed ID: 21992291 [TBL] [Abstract][Full Text] [Related]
57. Nonlinear interaction between double tearing mode and Kelvin-Helmholtz instability with different shear flows. Li Z; Wang XQ; Xu Y; Liu HF; Huang J Sci Rep; 2023 Aug; 13(1):13559. PubMed ID: 37604840 [TBL] [Abstract][Full Text] [Related]
58. Combined electromechanically driven pulsating flow of nonlinear viscoelastic fluids in narrow confinements. Kumar V; Mukherjee J; Sinha SK; Ghosh U J R Soc Interface; 2022 Apr; 19(189):20210876. PubMed ID: 35382577 [TBL] [Abstract][Full Text] [Related]
59. Modeling elastic instabilities in nematic elastomers. Mbanga BL; Ye F; Selinger JV; Selinger RL Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051701. PubMed ID: 21230488 [TBL] [Abstract][Full Text] [Related]
60. Rupture of thin liquid films: generalization of weakly nonlinear theory. Rubinstein BY; Leshansky AM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031603. PubMed ID: 21517509 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]