These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27078463)

  • 1. Anomalous capillary filling and wettability reversal in nanochannels.
    Gravelle S; Ybert C; Bocquet L; Joly L
    Phys Rev E; 2016 Mar; 93(3):033123. PubMed ID: 27078463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes.
    Joly L
    J Chem Phys; 2011 Dec; 135(21):214705. PubMed ID: 22149809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early regimes of water capillary flow in slit silica nanochannels.
    Oyarzua E; Walther JH; Mejía A; Zambrano HA
    Phys Chem Chem Phys; 2015 Jun; 17(22):14731-9. PubMed ID: 25976034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water transport and purification in nanochannels controlled by asymmetric wettability.
    Chen Q; Meng L; Li Q; Wang D; Guo W; Shuai Z; Jiang L
    Small; 2011 Aug; 7(15):2225-31. PubMed ID: 21608126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Osmotic Pressure in the Forced Wetting of Hydrophobic Nanopores.
    Michelin-Jamois M; Picard C; Vigier G; Charlaix E
    Phys Rev Lett; 2015 Jul; 115(3):036101. PubMed ID: 26230804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous Capillary Rise under Nanoconfinement: A View of Molecular Kinetic Theory.
    Feng D; Li X; Wang X; Li J; Zhang T; Sun Z; He M; Liu Q; Qin J; Han S; Hu J
    Langmuir; 2018 Jul; 34(26):7714-7725. PubMed ID: 29889541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wettability and Applications of Nanochannels.
    Zhang X; Liu H; Jiang L
    Adv Mater; 2019 Feb; 31(5):e1804508. PubMed ID: 30345614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wettability and confinement size effects on stability of water conveying nanotubes.
    Shaat M; Javed U; Faroughi S
    Sci Rep; 2020 Oct; 10(1):17167. PubMed ID: 33051583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular dynamics study of the force between planar substrates due to capillary bridges.
    Saavedra JH; Rozas RE; Toledo PG
    J Colloid Interface Sci; 2014 Jul; 426():145-51. PubMed ID: 24863777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics study of the influence of wall-gas interactions on heat flow in nanochannels.
    Markvoort AJ; Hilbers PA; Nedea SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066702. PubMed ID: 16089906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of an external electric field on capillary filling of water in hydrophilic silica nanochannels.
    Karna NK; Rojano Crisson A; Wagemann E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2018 Jul; 20(27):18262-18270. PubMed ID: 29953159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhomogeneous relaxation dynamics and phase behaviour of a liquid crystal confined in a nanoporous solid.
    Całus S; Kityk AV; Eich M; Huber P
    Soft Matter; 2015 Apr; 11(16):3176-87. PubMed ID: 25759093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thickness, stability and contact angle of liquid films on and inside nanofibres, nanotubes and nanochannels.
    Mattia D; Starov V; Semenov S
    J Colloid Interface Sci; 2012 Oct; 384(1):149-56. PubMed ID: 22809548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting in hydrophobic nanochannels: a challenge of classical capillarity.
    Helmy R; Kazakevich Y; Ni C; Fadeev AY
    J Am Chem Soc; 2005 Sep; 127(36):12446-7. PubMed ID: 16144365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of capillary absorption of droplets by carbon nanotubes.
    Schebarchov D; Hendy SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046309. PubMed ID: 18999528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interlink between Abnormal Water Imbibition in Hydrophilic and Rapid Flow in Hydrophobic Nanochannels.
    Zhou R; Neek-Amal M; Peeters FM; Bai B; Sun C
    Phys Rev Lett; 2024 May; 132(18):184001. PubMed ID: 38759191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid infiltration pressure for hydrophobic nanochannels.
    Mo J; Li L; Zhou J; Xu D; Huang B; Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033022. PubMed ID: 25871217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.