BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27078610)

  • 1. Rapid Bioorthogonal Chemistry Turn-on through Enzymatic or Long Wavelength Photocatalytic Activation of Tetrazine Ligation.
    Zhang H; Trout WS; Liu S; Andrade GA; Hudson DA; Scinto SL; Dicker KT; Li Y; Lazouski N; Rosenthal J; Thorpe C; Jia X; Fox JM
    J Am Chem Soc; 2016 May; 138(18):5978-83. PubMed ID: 27078610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling
    Wang C; Zhang H; Zhang T; Zou X; Wang H; Rosenberger JE; Vannam R; Trout WS; Grimm JB; Lavis LD; Thorpe C; Jia X; Li Z; Fox JM
    J Am Chem Soc; 2021 Jul; 143(28):10793-10803. PubMed ID: 34250803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Control of Rapid Bioorthogonal Tetrazine Ligations for Selective Functionalization of Microelectrodes.
    Ehret F; Wu H; Alexander SC; Devaraj NK
    J Am Chem Soc; 2015 Jul; 137(28):8876-9. PubMed ID: 26132207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Activation of Bioorthogonal Chemistry with Light (CABL) Enables Rapid, Spatiotemporally Controlled Labeling and No-Wash, Subcellular 3D-Patterning in Live Cells Using Long Wavelength Light.
    Jemas A; Xie Y; Pigga JE; Caplan JL; Am Ende CW; Fox JM
    J Am Chem Soc; 2022 Feb; 144(4):1647-1662. PubMed ID: 35072462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry.
    Liu L; Zhang D; Johnson M; Devaraj NK
    Nat Chem; 2022 Sep; 14(9):1078-1085. PubMed ID: 35788560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved metabolic stability for 18F PET probes rapidly constructed via tetrazine trans-cyclooctene ligation.
    Selvaraj R; Giglio B; Liu S; Wang H; Wang M; Yuan H; Chintala SR; Yap LP; Conti PS; Fox JM; Li Z
    Bioconjug Chem; 2015 Mar; 26(3):435-42. PubMed ID: 25679331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular Enzyme- and Light-Based Activation of Cyclopropene-Tetrazine Ligation.
    Jiang T; Kumar P; Huang W; Kao WS; Thompson AO; Camarda FM; Laughlin ST
    Chembiochem; 2019 Sep; 20(17):2222-2226. PubMed ID: 30990967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions.
    Siegl SJ; Galeta J; Dzijak R; Vázquez A; Del Río-Villanueva M; Dračínský M; Vrabel M
    Chembiochem; 2019 Apr; 20(7):886-890. PubMed ID: 30561884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-induced and Rapid Labeling of Tetrazine-Bearing Proteins via Cyclopropenone-Caged Bicyclononynes.
    Mayer SV; Murnauer A; von Wrisberg MK; Jokisch ML; Lang K
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15876-15882. PubMed ID: 31476269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications.
    Handula M; Chen KT; Seimbille Y
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A General Strategy to Design Highly Fluorogenic Far-Red and Near-Infrared Tetrazine Bioorthogonal Probes.
    Mao W; Tang J; Dai L; He X; Li J; Cai L; Liao P; Jiang R; Zhou J; Wu H
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2393-2397. PubMed ID: 33079440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 99mTc-Labelled Tetrazine for Bioorthogonal Chemistry. Synthesis and Biodistribution Studies with Small Molecule trans-Cyclooctene Derivatives.
    Vito A; Alarabi H; Czorny S; Beiraghi O; Kent J; Janzen N; Genady AR; Al-Karmi SA; Rathmann S; Naperstkow Z; Blacker M; Llano L; Berti PJ; Valliant JF
    PLoS One; 2016; 11(12):e0167425. PubMed ID: 27936007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemiluminescent probe for the detection of inverse electron demand Diels-Alder reaction between tetrazine and trans-Cyclooctene.
    Wu K; Royzen M
    Bioorg Med Chem; 2021 Oct; 47():116400. PubMed ID: 34530297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of IEDDA bioorthogonal system: Efficient process to improve trans-cyclooctene/tetrazine interaction.
    Béquignat JB; Ty N; Rondon A; Taiariol L; Degoul F; Canitrot D; Quintana M; Navarro-Teulon I; Miot-Noirault E; Boucheix C; Chezal JM; Moreau E
    Eur J Med Chem; 2020 Oct; 203():112574. PubMed ID: 32683167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioorthogonal turn-on probes for imaging small molecules inside living cells.
    Devaraj NK; Hilderbrand S; Upadhyay R; Mazitschek R; Weissleder R
    Angew Chem Int Ed Engl; 2010 Apr; 49(16):2869-72. PubMed ID: 20306505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-Benzoyl leucomethylene blue as a novel substrate for the assays of horseradish peroxidase by spectrophotometry and capillary electrophoresis-laser-induced fluorometry.
    Ren J; Kaneta T
    Anal Sci; 2022 Apr; 38(4):651-655. PubMed ID: 35286641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomedical applications of tetrazine cycloadditions.
    Devaraj NK; Weissleder R
    Acc Chem Res; 2011 Sep; 44(9):816-27. PubMed ID: 21627112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye.
    Abou-Gamra ZM; Ahmed MA
    J Photochem Photobiol B; 2016 Jul; 160():134-41. PubMed ID: 27107333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformationally Strained trans-Cyclooctene (sTCO) Enables the Rapid Construction of (18)F-PET Probes via Tetrazine Ligation.
    Wang M; Svatunek D; Rohlfing K; Liu Y; Wang H; Giglio B; Yuan H; Wu Z; Li Z; Fox J
    Theranostics; 2016; 6(6):887-95. PubMed ID: 27162558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.