These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 27079180)
1. The evolution of substrate specificity-associated residues and Ca(2+) -binding motifs in EF-hand-containing type II NAD(P)H dehydrogenases. Hao MS; Rasmusson AG Physiol Plant; 2016 Jul; 157(3):338-51. PubMed ID: 27079180 [TBL] [Abstract][Full Text] [Related]
2. Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana. Geisler DA; Broselid C; Hederstedt L; Rasmusson AG J Biol Chem; 2007 Sep; 282(39):28455-28464. PubMed ID: 17673460 [TBL] [Abstract][Full Text] [Related]
3. At5g50600 encodes a member of the short-chain dehydrogenase reductase superfamily with 11beta- and 17beta-hydroxysteroid dehydrogenase activities associated with Arabidopsis thaliana seed oil bodies. d'Andréa S; Canonge M; Beopoulos A; Jolivet P; Hartmann MA; Miquel M; Lepiniec L; Chardot T Biochimie; 2007 Feb; 89(2):222-9. PubMed ID: 17074428 [TBL] [Abstract][Full Text] [Related]
4. Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Michalecka AM; Svensson AS; Johansson FI; Agius SC; Johanson U; Brennicke A; Binder S; Rasmusson AG Plant Physiol; 2003 Oct; 133(2):642-52. PubMed ID: 12972666 [TBL] [Abstract][Full Text] [Related]
5. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. Wallström SV; Florez-Sarasa I; Araújo WL; Escobar MA; Geisler DA; Aidemark M; Lager I; Fernie AR; Ribas-Carbó M; Rasmusson AG Plant Cell Physiol; 2014 May; 55(5):881-96. PubMed ID: 24486764 [TBL] [Abstract][Full Text] [Related]
6. Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth. Wallström SV; Florez-Sarasa I; Araújo WL; Aidemark M; Fernández-Fernández M; Fernie AR; Ribas-Carbó M; Rasmusson AG Mol Plant; 2014 Feb; 7(2):356-68. PubMed ID: 23939432 [TBL] [Abstract][Full Text] [Related]
7. Pyridine nucleotide complexes with Bacillus anthracis coenzyme A-disulfide reductase: a structural analysis of dual NAD(P)H specificity. Wallen JR; Paige C; Mallett TC; Karplus PA; Claiborne A Biochemistry; 2008 May; 47(18):5182-93. PubMed ID: 18399646 [TBL] [Abstract][Full Text] [Related]
9. Arabidopsis thaliana alternative dehydrogenases: a potential therapy for mitochondrial complex I deficiency? Perspectives and pitfalls. Catania A; Iuso A; Bouchereau J; Kremer LS; Paviolo M; Terrile C; Bénit P; Rasmusson AG; Schwarzmayr T; Tiranti V; Rustin P; Rak M; Prokisch H; Schiff M Orphanet J Rare Dis; 2019 Oct; 14(1):236. PubMed ID: 31665043 [TBL] [Abstract][Full Text] [Related]
10. Aldehyde Dehydrogenases Function in the Homeostasis of Pyridine Nucleotides in Arabidopsis thaliana. Missihoun TD; Kotchoni SO; Bartels D Sci Rep; 2018 Feb; 8(1):2936. PubMed ID: 29440669 [TBL] [Abstract][Full Text] [Related]
11. Switching the substrate specificity from NADH to NADPH by a single mutation of NADH oxidase from Lactobacillus rhamnosus. Li FL; Zhou Q; Wei W; Gao J; Zhang YW Int J Biol Macromol; 2019 Aug; 135():328-336. PubMed ID: 31128193 [TBL] [Abstract][Full Text] [Related]
12. The complex allosteric and redox regulation of the fumarate hydratase and malate dehydratase reactions of Arabidopsis thaliana Fumarase 1 and 2 gives clues for understanding the massive accumulation of fumarate. Zubimendi JP; Martinatto A; Valacco MP; Moreno S; Andreo CS; Drincovich MF; Tronconi MA FEBS J; 2018 Jun; 285(12):2205-2224. PubMed ID: 29688630 [TBL] [Abstract][Full Text] [Related]
13. Identification of AtNDI1, an internal non-phosphorylating NAD(P)H dehydrogenase in Arabidopsis mitochondria. Moore CS; Cook-Johnson RJ; Rudhe C; Whelan J; Day DA; Wiskich JT; Soole KL Plant Physiol; 2003 Dec; 133(4):1968-78. PubMed ID: 14630960 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Type II NAD(P)H Dehydrogenases. Soole KL; Smith CA Methods Mol Biol; 2015; 1305():151-64. PubMed ID: 25910733 [TBL] [Abstract][Full Text] [Related]
15. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. Ogasawara Y; Kaya H; Hiraoka G; Yumoto F; Kimura S; Kadota Y; Hishinuma H; Senzaki E; Yamagoe S; Nagata K; Nara M; Suzuki K; Tanokura M; Kuchitsu K J Biol Chem; 2008 Apr; 283(14):8885-92. PubMed ID: 18218618 [TBL] [Abstract][Full Text] [Related]
16. Engineering the nucleotide coenzyme specificity and sulfhydryl redox sensitivity of two stress-responsive aldehyde dehydrogenase isoenzymes of Arabidopsis thaliana. Stiti N; Adewale IO; Petersen J; Bartels D; Kirch HH Biochem J; 2011 Mar; 434(3):459-71. PubMed ID: 21166653 [TBL] [Abstract][Full Text] [Related]
17. Tic62: a protein family from metabolism to protein translocation. Balsera M; Stengel A; Soll J; Bölter B BMC Evol Biol; 2007 Mar; 7():43. PubMed ID: 17374152 [TBL] [Abstract][Full Text] [Related]
18. A Dedicated Type II NADPH Dehydrogenase Performs the Penultimate Step in the Biosynthesis of Vitamin K1 in Synechocystis and Arabidopsis. Fatihi A; Latimer S; Schmollinger S; Block A; Dussault PH; Vermaas WF; Merchant SS; Basset GJ Plant Cell; 2015 Jun; 27(6):1730-41. PubMed ID: 26023160 [TBL] [Abstract][Full Text] [Related]
19. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Xie DY; Sharma SB; Paiva NL; Ferreira D; Dixon RA Science; 2003 Jan; 299(5605):396-9. PubMed ID: 12532018 [TBL] [Abstract][Full Text] [Related]
20. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]