These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 27079263)
1. Catechol degradation on hematite/silica-gas interface as affected by gas composition and the formation of environmentally persistent free radicals. Li H; Guo H; Pan B; Liao S; Zhang D; Yang X; Min C; Xing B Sci Rep; 2016 Apr; 6():24494. PubMed ID: 27079263 [TBL] [Abstract][Full Text] [Related]
2. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation. Li H; Pan B; Liao S; Zhang D; Xing B Environ Pollut; 2014 May; 188():153-8. PubMed ID: 24594596 [TBL] [Abstract][Full Text] [Related]
3. The exposed hematite surface and the generation of environmentally persistent free radicals during catechol degradation. Zhao Z; Chen Q; Li H; Lang D; Wu M; Zhou D; Pan B; Xing B Environ Sci Process Impacts; 2021 Feb; 23(1):109-116. PubMed ID: 33300898 [TBL] [Abstract][Full Text] [Related]
4. A Comparative Study on the Formation of Environmentally Persistent Free Radicals (EPFRs) on Hematite and Goethite: Contribution of Various Catechol Degradation Byproducts. Yi P; Chen Q; Li H; Lang D; Zhao Q; Pan B; Xing B Environ Sci Technol; 2019 Dec; 53(23):13713-13719. PubMed ID: 31682408 [TBL] [Abstract][Full Text] [Related]
5. Formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(III)2O3/silica surface. Vejerano E; Lomnicki S; Dellinger B Environ Sci Technol; 2011 Jan; 45(2):589-94. PubMed ID: 21138295 [TBL] [Abstract][Full Text] [Related]
6. Generation and persistency of combustion-derived environmentally persistent free radicals from phenolic compounds over a Fe Hu Y; Yang G; Zhou N; Jiao L; Wang L; Yan J Chemosphere; 2024 Aug; 362():142468. PubMed ID: 38821125 [TBL] [Abstract][Full Text] [Related]
7. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays. Jia H; Nulaji G; Gao H; Wang F; Zhu Y; Wang C Environ Sci Technol; 2016 Jun; 50(12):6310-9. PubMed ID: 27224055 [TBL] [Abstract][Full Text] [Related]
8. CuO and TiO Zhao Z; Wu M; Zhou D; Chen Q; Li H; Lang D; Pan B; Xing B Sci Total Environ; 2021 Jun; 775():145555. PubMed ID: 33631563 [TBL] [Abstract][Full Text] [Related]
9. DRIFTS studies on the role of surface water in stabilizing catechol-iron(III) complexes at the gas/solid interface. Tofan-Lazar J; Situm A; Al-Abadleh HA J Phys Chem A; 2013 Oct; 117(40):10368-80. PubMed ID: 24044553 [TBL] [Abstract][Full Text] [Related]
10. Interaction of benzo[a]pyrene with Cu(II)-montmorillonite: Generation and toxicity of environmentally persistent free radicals and reactive oxygen species. Zhao S; Miao D; Zhu K; Tao K; Wang C; Sharma VK; Jia H Environ Int; 2019 Aug; 129():154-163. PubMed ID: 31128436 [TBL] [Abstract][Full Text] [Related]
11. Photoformation of environmentally persistent free radicals on particulate organic matter in aqueous solution: Role of anthracene and formation mechanism. Li X; Zhao H; Qu B; Tian Y Chemosphere; 2022 Mar; 291(Pt 1):132815. PubMed ID: 34752830 [TBL] [Abstract][Full Text] [Related]
12. Radicals from the gas-phase pyrolysis of catechol: 1. o-Semiquinone and ipso-catechol radicals. Khachatryan L; Adounkpe J; Asatryan R; Dellinger B J Phys Chem A; 2010 Feb; 114(6):2306-12. PubMed ID: 20104861 [TBL] [Abstract][Full Text] [Related]
13. Formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(II)O supported on a silica surface. Vejerano E; Lomnicki SM; Dellinger B Environ Sci Technol; 2012 Sep; 46(17):9406-11. PubMed ID: 22831558 [TBL] [Abstract][Full Text] [Related]
14. Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria. Zhang Y; Guo X; Si X; Yang R; Zhou J; Quan X Sci Total Environ; 2019 Oct; 687():348-354. PubMed ID: 31207524 [TBL] [Abstract][Full Text] [Related]
15. Degradation of p-Nitrophenol on Biochars: Role of Persistent Free Radicals. Yang J; Pan B; Li H; Liao S; Zhang D; Wu M; Xing B Environ Sci Technol; 2016 Jan; 50(2):694-700. PubMed ID: 26691611 [TBL] [Abstract][Full Text] [Related]
16. Formation of environmentally persistent free radicals from photodegradation of triclosan by metal oxides/silica suspensions and particles. Cheng P; Zhao X; El-Ramady H; Elsakhawy T; Waigi MG; Ling W Chemosphere; 2022 Mar; 290():133322. PubMed ID: 34922972 [TBL] [Abstract][Full Text] [Related]
17. Interfacial formation of environmentally persistent free radicals-A theoretical investigation on pentachlorophenol activation on montmorillonite in PM Pan W; Chang J; Liu X; Xue Q; Fu J; Zhang A Ecotoxicol Environ Saf; 2019 Mar; 169():623-630. PubMed ID: 30496994 [TBL] [Abstract][Full Text] [Related]
18. Environmentally persistent free radicals: Occurrence, formation mechanisms and implications. Pan B; Li H; Lang D; Xing B Environ Pollut; 2019 May; 248():320-331. PubMed ID: 30802746 [TBL] [Abstract][Full Text] [Related]
19. Scientific and regulatory challenges of environmentally persistent free radicals: From formation theory to risk prevention strategies. Xu Y; Lu X; Su G; Chen X; Meng J; Li Q; Wang C; Shi B J Hazard Mater; 2023 Aug; 456():131674. PubMed ID: 37236112 [TBL] [Abstract][Full Text] [Related]
20. Direct toxicity of environmentally persistent free radicals to nematode Caenorhabditis elegans after excluding the concomitant chemicals. Li H; Li H; Zuo N; Liu Y; Lang D; Steinberg C; Pan B; Xing B Sci Total Environ; 2022 Sep; 839():156226. PubMed ID: 35643143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]