These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27079451)

  • 1. Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9.
    Chakrapani V; Patra SK; Panda RP; Rasal KD; Jayasankar P; Barman HK
    Dev Comp Immunol; 2016 Aug; 61():242-7. PubMed ID: 27079451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First evidence of comparative responses of Toll-like receptor 22 (TLR22) to relatively resistant and susceptible Indian farmed carps to Argulus siamensis infection.
    Panda RP; Chakrapani V; Patra SK; Saha JN; Jayasankar P; Kar B; Sahoo PK; Barman HK
    Dev Comp Immunol; 2014 Nov; 47(1):25-35. PubMed ID: 24998226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp.
    Zhong Z; Niu P; Wang M; Huang G; Xu S; Sun Y; Xu X; Hou Y; Sun X; Yan Y; Wang H
    Sci Rep; 2016 Mar; 6():22953. PubMed ID: 26976234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of a fish-specific toll-like receptor 22 (TLR22) gene from common carp (Cyprinus carpio L.): Evolutionary relationship and induced expression upon immune stimulants.
    Li H; Yang G; Ma F; Li T; Yang H; Rombout JH; An L
    Fish Shellfish Immunol; 2017 Apr; 63():74-86. PubMed ID: 28192255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toll-like receptor 22 in Labeo rohita: molecular cloning, characterization, 3D modeling, and expression analysis following ligands stimulation and bacterial infection.
    Samanta M; Swain B; Basu M; Mahapatra G; Sahoo BR; Paichha M; Lenka SS; Jayasankar P
    Appl Biochem Biotechnol; 2014 Sep; 174(1):309-27. PubMed ID: 25064133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tlr22 structure and expression characteristic of barbel chub, Squaliobarbus curriculus provides insights into antiviral immunity against infection with grass carp reovirus.
    Wang RH; Li W; Fan YD; Liu QL; Zeng LB; Xiao TY
    Fish Shellfish Immunol; 2017 Jul; 66():120-128. PubMed ID: 28442418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and expression of Megalobrama amblycephala toll-like receptor 22 involved in the response to Aeromonas hydrophila.
    Lai RF; Jakovlić I; Liu H; Wei J; Zhan FB; Yang PH; Wang WM
    J Fish Biol; 2017 Mar; 90(3):803-818. PubMed ID: 27943292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Silico Analysis of nsSNPs of Carp TLR22 Gene Affecting its Binding Ability with Poly I:C.
    Chakrapani V; Rasal KD; Kumar S; Mohapatra SD; Sundaray JK; Jayasankar P; Barman HK
    Interdiscip Sci; 2018 Dec; 10(4):641-652. PubMed ID: 28660537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in therapeutic CRISPR/Cas9 genome editing.
    Savić N; Schwank G
    Transl Res; 2016 Feb; 168():15-21. PubMed ID: 26470680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system.
    Xu X; Cao X; Gao J
    Transgenic Res; 2019 Aug; 28(3-4):341-356. PubMed ID: 31183663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basics of genome editing technology and its application in livestock species.
    Petersen B
    Reprod Domest Anim; 2017 Aug; 52 Suppl 3():4-13. PubMed ID: 28815851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9.
    Ma J; Fan Y; Zhou Y; Liu W; Jiang N; Zhang J; Zeng L
    Fish Shellfish Immunol; 2018 May; 76():206-215. PubMed ID: 29477498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Mediated Base Editing without DNA Double-Strand Breaks.
    Plosky BS
    Mol Cell; 2016 May; 62(4):477-8. PubMed ID: 27203175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.
    Steinert J; Schiml S; Fauser F; Puchta H
    Plant J; 2015 Dec; 84(6):1295-305. PubMed ID: 26576927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny.
    Schiml S; Fauser F; Puchta H
    Plant J; 2014 Dec; 80(6):1139-50. PubMed ID: 25327456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome editing in fishes and their applications.
    Zhu B; Ge W
    Gen Comp Endocrinol; 2018 Feb; 257():3-12. PubMed ID: 28919449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization and expression analysis of toll-like receptors 5 and 22 from natural triploid Carassius auratus.
    Zhang J; Wang L; Zhao Y; Kong X; Wu F; Zhao X
    Fish Shellfish Immunol; 2017 May; 64():1-13. PubMed ID: 28259778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.