These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 27079543)

  • 41. Real-time electrochemical monitoring: toward green analytical chemistry.
    Wang J
    Acc Chem Res; 2002 Sep; 35(9):811-6. PubMed ID: 12234211
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review.
    Farzin L; Shamsipur M; Samandari L; Sheibani S
    Mikrochim Acta; 2018 May; 185(5):276. PubMed ID: 29721621
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unlocking the full power of electrochemical fingerprinting for on-site sensing applications.
    Moro G; Barich H; Driesen K; Felipe Montiel N; Neven L; Domingues Mendonça C; Thiruvottriyur Shanmugam S; Daems E; De Wael K
    Anal Bioanal Chem; 2020 Sep; 412(24):5955-5968. PubMed ID: 32248394
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical sensors.
    Bakker E
    Anal Chem; 2004 Jun; 76(12):3285-98. PubMed ID: 15193109
    [No Abstract]   [Full Text] [Related]  

  • 45. Analytical detection techniques for droplet microfluidics--a review.
    Zhu Y; Fang Q
    Anal Chim Acta; 2013 Jul; 787():24-35. PubMed ID: 23830418
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays.
    Zhang D; Lu Y; Jiang J; Zhang Q; Yao Y; Wang P; Chen B; Cheng Q; Liu GL; Liu Q
    Biosens Bioelectron; 2015 May; 67():237-42. PubMed ID: 25172029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection.
    Cai H; Cao X; Jiang Y; He P; Fang Y
    Anal Bioanal Chem; 2003 Jan; 375(2):287-93. PubMed ID: 12560975
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomics approaches for myeloid leukemia drug discovery.
    Kapoor I; Pal P; Lochab S; Kanaujiya JK; Trivedi AK
    Expert Opin Drug Discov; 2012 Dec; 7(12):1165-75. PubMed ID: 22971110
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemical oxidation coupled with liquid chromatography and mass spectrometry to study the oxidative stability of active pharmaceutical ingredients in solution: A comparison of off-line and on-line approaches.
    Torres S; Brown R; Zelesky T; Scrivens G; Szucs R; Hawkins JM; Taylor MR
    J Pharm Biomed Anal; 2016 Nov; 131():71-79. PubMed ID: 27526403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology.
    Theberge AB; Courtois F; Schaerli Y; Fischlechner M; Abell C; Hollfelder F; Huck WT
    Angew Chem Int Ed Engl; 2010 Aug; 49(34):5846-68. PubMed ID: 20572214
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Combination of Electrochemistry and Microfluidic Technology in Drug Metabolism Studies.
    Grint I; Crea F; Vasiliadou R
    ChemistryOpen; 2022 Dec; 11(12):e202200100. PubMed ID: 36166688
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biosensing Technologies for Therapeutic Drug Monitoring.
    Meneghello A; Tartaggia S; Alvau MD; Polo F; Toffoli G
    Curr Med Chem; 2018; 25(34):4354-4377. PubMed ID: 28724346
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A microfluidic chip for electrochemical conversions in drug metabolism studies.
    Odijk M; Baumann A; Lohmann W; van den Brink FT; Olthuis W; Karst U; van den Berg A
    Lab Chip; 2009 Jun; 9(12):1687-93. PubMed ID: 19495451
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanomaterials based electrochemical sensors for biomedical applications.
    Chen A; Chatterjee S
    Chem Soc Rev; 2013 Jun; 42(12):5425-38. PubMed ID: 23508125
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrated nanoliter systems.
    Hong JW; Quake SR
    Nat Biotechnol; 2003 Oct; 21(10):1179-83. PubMed ID: 14520403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources.
    Michel T; Halabalaki M; Skaltsounis AL
    Planta Med; 2013 May; 79(7):514-32. PubMed ID: 23479392
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advances in mass spectrometry applied to pharmaceutical metabolomics.
    Drexler DM; Reily MD; Shipkova PA
    Anal Bioanal Chem; 2011 Mar; 399(8):2645-53. PubMed ID: 21107980
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inductively coupled plasma-MS in drug development: bioanalytical aspects and applications.
    van Heuveln F; Meijering H; Wieling J
    Bioanalysis; 2012 Aug; 4(15):1933-65. PubMed ID: 22943623
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.
    Jia X; Dong S; Wang E
    Biosens Bioelectron; 2016 Feb; 76():80-90. PubMed ID: 26001888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.