These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 27079573)

  • 21. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage.
    Wang YC; Yu RC; Chou CC
    Int J Food Microbiol; 2004 Jun; 93(2):209-17. PubMed ID: 15135959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of freezing temperature before freeze-drying on the viability of various Lactobacillus plantarum strains.
    Wang GQ; Pu J; Yu XQ; Xia YJ; Ai LZ
    J Dairy Sci; 2020 Apr; 103(4):3066-3075. PubMed ID: 32037182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osmotic stress affects the stability of freeze-dried Lactobacillus buchneri R1102 as a result of intracellular betaine accumulation and membrane characteristics.
    Louesdon S; Charlot-Rougé S; Juillard V; Tourdot-Maréchal R; Béal C
    J Appl Microbiol; 2014 Jul; 117(1):196-207. PubMed ID: 24661271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of acids produced from carbohydrate metabolism in cryoprotectants on the viability of freeze-dried Lactobacillus and prediction of optimal initial cell concentration.
    Cui S; Hang F; Liu X; Xu Z; Liu Z; Zhao J; Zhang H; Chen W
    J Biosci Bioeng; 2018 May; 125(5):513-518. PubMed ID: 29331529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial inactivation and MLF performances of Tempranillo Rioja wines treated with PEF after alcoholic fermentation.
    González-Arenzana L; López-Alfaro I; Garde-Cerdán T; Portu J; López R; Santamaría P
    Int J Food Microbiol; 2018 Mar; 269():19-26. PubMed ID: 29358132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Survival of freeze-dried leuconostoc mesenteroides and Lactobacillus plantarum related to their cellular fatty acids composition during storage.
    Coulibaly I; Amenan AY; Lognay G; Fauconnier ML; Thonart P
    Appl Biochem Biotechnol; 2009 Apr; 157(1):70-84. PubMed ID: 18491235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of encapsulation on the viability of potential probiotic Lactobacillus plantarum exposed to high acidity condition and presence of bile salts.
    Tee WF; Nazaruddin R; Tan YN; Ayob MK
    Food Sci Technol Int; 2014 Sep; 20(6):399-404. PubMed ID: 23774606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patagonian red wines: selection of Lactobacillus plantarum isolates as potential starter cultures for malolactic fermentation.
    Bravo-Ferrada BM; Hollmann A; Delfederico L; Valdés La Hens D; Caballero A; Semorile L
    World J Microbiol Biotechnol; 2013 Sep; 29(9):1537-49. PubMed ID: 23546829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A strategy to design efficient fermentation processes for traditional beverages production: prickly pear wine.
    Navarrete-Bolaños JL; Fato-Aldeco E; Gutiérrez-Moreno K; Botello-Álvarez JE; Jiménez-Islas H; Rico-Martínez R
    J Food Sci; 2013 Oct; 78(10):M1560-M1568. PubMed ID: 24032574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inoculum Strategies and Performances of Malolactic Starter
    Lombardi SJ; Pannella G; Iorizzo M; Testa B; Succi M; Tremonte P; Sorrentino E; Di Renzo M; Strollo D; Coppola R
    Microorganisms; 2020 Apr; 8(4):. PubMed ID: 32260418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus.
    Carvalho AS; Silva J; Ho P; Teixeira P; Malcata FX; Gibbs P
    Biotechnol Prog; 2004; 20(1):248-54. PubMed ID: 14763849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microencapsulation of Lactobacillus plantarum (mtcc 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions.
    Dolly P; Anishaparvin A; Joseph GS; Anandharamakrishnan C
    J Microencapsul; 2011; 28(6):568-74. PubMed ID: 21827359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of biological and antimicrobial properties of freeze-dried whey fermented by different strains of Lactobacillus plantarum.
    Luz C; Izzo L; Graziani G; Gaspari A; Ritieni A; Mañes J; Meca G
    Food Funct; 2018 Jul; 9(7):3688-3697. PubMed ID: 29969130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploitation of Prunus mahaleb fruit by fermentation with selected strains of Lactobacillus plantarum and Saccharomyces cerevisiae.
    Gerardi C; Tristezza M; Giordano L; Rampino P; Perrotta C; Baruzzi F; Capozzi V; Mita G; Grieco F
    Food Microbiol; 2019 Dec; 84():103262. PubMed ID: 31421756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage.
    Marcial-Coba MS; Cieplak T; Cahú TB; Blennow A; Knøchel S; Nielsen DS
    Food Funct; 2018 Nov; 9(11):5868-5879. PubMed ID: 30362482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Lactobacillus plantarum on yogurt fermentation properties and subsequent changes during postfermentation storage.
    Li C; Song J; Kwok LY; Wang J; Dong Y; Yu H; Hou Q; Zhang H; Chen Y
    J Dairy Sci; 2017 Apr; 100(4):2512-2525. PubMed ID: 28215898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of a protective medium for enhancing the viability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus based on response surface methodology.
    Huang L; Lu Z; Yuan Y; Lü F; Bie X
    J Ind Microbiol Biotechnol; 2006 Jan; 33(1):55-61. PubMed ID: 16244855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freeze-dried Saccharomyces cerevisiae cells immobilized on potato pieces for low-temperature winemaking.
    Kandylis P; Dimitrellou D; Lymnaiou P; Koutinas AA
    Appl Biochem Biotechnol; 2014 Jun; 173(3):716-30. PubMed ID: 24699815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine.
    Kim DH; Hong YA; Park HD
    Biotechnol Lett; 2008 Sep; 30(9):1633-8. PubMed ID: 18414791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Co-Inoculation of
    Tufariello M; Capozzi V; Spano G; Cantele G; Venerito P; Mita G; Grieco F
    Microorganisms; 2020 May; 8(5):. PubMed ID: 32414096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.