These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27079623)

  • 1. The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint.
    Li J; Hua X; Jones AC; Williams S; Jin Z; Fisher J; Wilcox RK
    J Biomech; 2016 Jun; 49(9):1679-1685. PubMed ID: 27079623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip.
    Anderson AE; Ellis BJ; Maas SA; Weiss JA
    J Biomech; 2010 May; 43(7):1351-7. PubMed ID: 20176359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of finite element predictions of cartilage contact pressure in the human hip joint.
    Anderson AE; Ellis BJ; Maas SA; Peters CL; Weiss JA
    J Biomech Eng; 2008 Oct; 130(5):051008. PubMed ID: 19045515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of non-spherical hip joint cartilage surface to hip joint contact stress.
    Gu DY; Hu F; Wei JH; Dai KR; Chen YZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8166-9. PubMed ID: 22256237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element prediction of cartilage contact stresses in normal human hips.
    Harris MD; Anderson AE; Henak CR; Ellis BJ; Peters CL; Weiss JA
    J Orthop Res; 2012 Jul; 30(7):1133-9. PubMed ID: 22213112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of cartilage contact pressure and loading in the hip joint during split posture.
    Assassi L; Magnenat-Thalmann N
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):745-56. PubMed ID: 26450106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis.
    Mononen ME; Mikkola MT; Julkunen P; Ojala R; Nieminen MT; Jurvelin JS; Korhonen RK
    J Biomech; 2012 Feb; 45(3):579-87. PubMed ID: 22137088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications.
    Pierce DM; Ricken T; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2013; 16(12):1344-61. PubMed ID: 22764882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers.
    Li J; Stewart TD; Jin Z; Wilcox RK; Fisher J
    J Biomech; 2013 Jun; 46(10):1641-7. PubMed ID: 23664238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new discrete element analysis method for predicting hip joint contact stresses.
    Abraham CL; Maas SA; Weiss JA; Ellis BJ; Peters CL; Anderson AE
    J Biomech; 2013 Apr; 46(6):1121-7. PubMed ID: 23453394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a hip joint model for finite volume simulations.
    Cardiff P; Karač A; FitzPatrick D; Ivanković A
    J Biomech Eng; 2014 Jan; 136(1):011006. PubMed ID: 24141555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study.
    Hua X; Li J; Wilcox RK; Fisher J; Jones AC
    Proc Inst Mech Eng H; 2015 Aug; 229(8):570-80. PubMed ID: 26112348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint.
    Eckstein F; von Eisenhart-Rothe R; Landgraf J; Adam C; Loehe F; Müller-Gerbl M; Putz R
    Acta Anat (Basel); 1997; 158(3):192-204. PubMed ID: 9394956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hip joint geometry effects on cartilage contact stresses during a gait cycle.
    Hui-Hui Wu ; Dong Wang ; An-Bang Ma ; Dong-Yun Gu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6038-6041. PubMed ID: 28269629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale modelling for investigating the long-term time-dependent biphasic behaviour of the articular cartilage in the natural hip joint.
    Hua X; Shu L; Li J
    Biomech Model Mechanobiol; 2022 Aug; 21(4):1145-1155. PubMed ID: 35482145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen fibres determine the crack morphology in articular cartilage.
    Moo EK; Tanska P; Federico S; Al-Saffar Y; Herzog W; Korhonen RK
    Acta Biomater; 2021 May; 126():301-314. PubMed ID: 33757903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint.
    Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK
    J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cartilage stresses in the human hip joint.
    Macirowski T; Tepic S; Mann RW
    J Biomech Eng; 1994 Feb; 116(1):10-8. PubMed ID: 8189704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions.
    Wan L; de Asla RJ; Rubash HE; Li G
    Osteoarthritis Cartilage; 2006 Dec; 14(12):1294-301. PubMed ID: 16787752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.