BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27079836)

  • 1. Role of Phosphodiesterase 5 and Cyclic GMP in Hypertension.
    Mergia E; Stegbauer J
    Curr Hypertens Rep; 2016 Apr; 18(5):39. PubMed ID: 27079836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes.
    Castro LR; Schittl J; Fischmeister R
    Circ Res; 2010 Nov; 107(10):1232-40. PubMed ID: 20847310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic GMP-dependent signaling in cardiac myocytes.
    Takimoto E
    Circ J; 2012; 76(8):1819-25. PubMed ID: 22785374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous single-label cGMP detection platform for the functional study of nitric oxide-sensitive (soluble) guanylyl cyclases and cGMP-specific phosphodiesterases.
    Kopra K; Sharina I; Martin E; Härmä H
    Sci Rep; 2020 Oct; 10(1):17469. PubMed ID: 33060787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo reconstitution of the negative feedback in nitric oxide/cGMP signaling: role of phosphodiesterase type 5 phosphorylation.
    Mullershausen F; Russwurm M; Koesling D; Friebe A
    Mol Biol Cell; 2004 Sep; 15(9):4023-30. PubMed ID: 15240816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pros and Cons of Pharmacological Manipulation of cGMP-PDEs in the Prevention and Treatment of Breast Cancer.
    Di Iorio P; Ronci M; Giuliani P; Caciagli F; Ciccarelli R; Caruso V; Beggiato S; Zuccarini M
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased cGMP phosphodiesterase activity mediates renal resistance to ANP in rats with bile duct ligation.
    Ni XP; Safai M; Gardner DG; Humphreys MH
    Kidney Int; 2001 Apr; 59(4):1264-73. PubMed ID: 11260387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphodiesterase type 2 and the homeostasis of cyclic GMP in living thalamic neurons.
    Hepp R; Tricoire L; Hu E; Gervasi N; Paupardin-Tritsch D; Lambolez B; Vincent P
    J Neurochem; 2007 Sep; 102(6):1875-1886. PubMed ID: 17561940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphodiesterase 5 attenuates the vasodilatory response in renovascular hypertension.
    Stegbauer J; Friedrich S; Potthoff SA; Broekmans K; Cortese-Krott MM; Quack I; Rump LC; Koesling D; Mergia E
    PLoS One; 2013; 8(11):e80674. PubMed ID: 24260450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDE1 or PDE5 inhibition augments NO-dependent hypoxic constriction of porcine coronary artery via elevating inosine 3',5'-cyclic monophosphate level.
    Nan Y; Zeng X; Jin Z; Li N; Chen Z; Chen J; Wang D; Wang Y; Lin Z; Ying L
    J Cell Mol Med; 2020 Dec; 24(24):14514-14524. PubMed ID: 33169529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide-evoked transient kinetics of cyclic GMP in vascular smooth muscle cells.
    Cawley SM; Sawyer CL; Brunelle KF; van der Vliet A; Dostmann WR
    Cell Signal; 2007 May; 19(5):1023-33. PubMed ID: 17207606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic GMP in Vascular Relaxation: Export Is of Similar Importance as Degradation.
    Krawutschke C; Koesling D; Russwurm M
    Arterioscler Thromb Vasc Biol; 2015 Sep; 35(9):2011-9. PubMed ID: 26205960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II-mediated hypertension impairs nitric oxide-induced NKCC2 inhibition in thick ascending limbs.
    Ramseyer VD; Ortiz PA; Carretero OA; Garvin JL
    Am J Physiol Renal Physiol; 2016 Apr; 310(8):F748-F754. PubMed ID: 26887831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphodiesterase 5 (PDE5): Structure-function regulation and therapeutic applications of inhibitors.
    Ahmed WS; Geethakumari AM; Biswas KH
    Biomed Pharmacother; 2021 Feb; 134():111128. PubMed ID: 33348311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic GMP in Liver Cirrhosis-Role in Pathophysiology of Portal Hypertension and Therapeutic Implications.
    Kreisel W; Lazaro A; Trebicka J; Grosse Perdekamp M; Schmitt-Graeff A; Deibert P
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the nitric oxide-soluble guanylyl cyclase pathway in obstructive airway diseases.
    Dupont LL; Glynos C; Bracke KR; Brouckaert P; Brusselle GG
    Pulm Pharmacol Ther; 2014 Oct; 29(1):1-6. PubMed ID: 25043200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis.
    Egbert JR; Uliasz TF; Shuhaibar LC; Geerts A; Wunder F; Kleiman RJ; Humphrey JM; Lampe PD; Artemyev NO; Rybalkin SD; Beavo JA; Movsesian MA; Jaffe LA
    Biol Reprod; 2016 May; 94(5):110. PubMed ID: 27009040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating cGMP to treat lung diseases.
    Ghofrani HA; Grimminger F
    Handb Exp Pharmacol; 2009; 191(191):469-83. PubMed ID: 19089341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphodiesterase regulation of nitric oxide signaling.
    Kass DA; Takimoto E; Nagayama T; Champion HC
    Cardiovasc Res; 2007 Jul; 75(2):303-14. PubMed ID: 17467673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.