These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 27079897)
1. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction. Chen D; Ye F; Liu H; Yang J Sci Rep; 2016 Apr; 6():24600. PubMed ID: 27079897 [TBL] [Abstract][Full Text] [Related]
2. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design. Feng Y; Ye F; Liu H; Yang J Sci Rep; 2015 Nov; 5():16219. PubMed ID: 26578100 [TBL] [Abstract][Full Text] [Related]
3. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Chen D; Li C; Liu H; Ye F; Yang J Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550 [TBL] [Abstract][Full Text] [Related]
4. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction. Ye F; Liu H; Hu W; Zhong J; Chen Y; Cao H; Yang J Dalton Trans; 2012 Mar; 41(10):2898-903. PubMed ID: 22261896 [TBL] [Abstract][Full Text] [Related]
5. Hollow and cage-bell structured nanomaterials of noble metals. Liu H; Qu J; Chen Y; Li J; Ye F; Lee JY; Yang J J Am Chem Soc; 2012 Jul; 134(28):11602-10. PubMed ID: 22694734 [TBL] [Abstract][Full Text] [Related]
6. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances. Kuai L; Geng B; Wang S; Sang Y Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952 [TBL] [Abstract][Full Text] [Related]
7. A strategy for fabricating porous PdNi@Pt core-shell nanostructures and their enhanced activity and durability for the methanol electrooxidation. Liu X; Xu G; Chen Y; Lu T; Tang Y; Xing W Sci Rep; 2015 Jan; 5():7619. PubMed ID: 25557190 [TBL] [Abstract][Full Text] [Related]
8. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction. Yang J; Yang J; Ying JY ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786 [TBL] [Abstract][Full Text] [Related]
9. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution. Salem MA; Bakr EA; El-Attar HG Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():155-163. PubMed ID: 28709141 [TBL] [Abstract][Full Text] [Related]
10. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814 [TBL] [Abstract][Full Text] [Related]
11. Facile solution synthesis of Ag@Pt core-shell nanoparticles with dendritic Pt shells. Li C; Yamauchi Y Phys Chem Chem Phys; 2013 Mar; 15(10):3490-6. PubMed ID: 23361313 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness. Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency. Sui N; Wang K; Shan X; Bai Q; Wang L; Xiao H; Liu M; Colvin VL; Yu WW Dalton Trans; 2017 Nov; 46(44):15541-15548. PubMed ID: 29091089 [TBL] [Abstract][Full Text] [Related]
14. The unique Pd@Pt/C core-shell nanoparticles as methanol-tolerant catalysts using sonochemical synthesis. Zheng H; Matseke MS; Munonde TS Ultrason Sonochem; 2019 Oct; 57():166-171. PubMed ID: 31208611 [TBL] [Abstract][Full Text] [Related]
15. Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement. Miyakawa M; Hiyoshi N; Nishioka M; Koda H; Sato K; Miyazawa A; Suzuki TM Nanoscale; 2014 Aug; 6(15):8720-5. PubMed ID: 24948122 [TBL] [Abstract][Full Text] [Related]
16. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles. Guo S; Zhang X; Zhu W; He K; Su D; Mendoza-Garcia A; Ho SF; Lu G; Sun S J Am Chem Soc; 2014 Oct; 136(42):15026-33. PubMed ID: 25279704 [TBL] [Abstract][Full Text] [Related]
17. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell. Feng Y; Yang J; Liu H; Ye F; Yang J Sci Rep; 2014 Jan; 4():3813. PubMed ID: 24448514 [TBL] [Abstract][Full Text] [Related]
18. Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation. Yin S; Wang Z; Li C; Yu H; Deng K; Xu Y; Li X; Wang L; Wang H Nanoscale Adv; 2020 Mar; 2(3):1084-1089. PubMed ID: 36133045 [TBL] [Abstract][Full Text] [Related]
19. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Guo S; Dong S; Wang E Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027 [TBL] [Abstract][Full Text] [Related]
20. Kinetically controlled autocatalytic chemical process for bulk production of bimetallic core-shell structured nanoparticles. Taufany F; Pan CJ; Rick J; Chou HL; Tsai MC; Hwang BJ; Liu DG; Lee JF; Tang MT; Lee YC; Chen CI ACS Nano; 2011 Dec; 5(12):9370-81. PubMed ID: 22047129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]