These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 27079897)
21. Carbon-supported Pt^Ag nanostructures as cathode catalysts for oxygen reduction reaction. Feng YY; Zhang GR; Ma JH; Liu G; Xu BQ Phys Chem Chem Phys; 2011 Mar; 13(9):3863-72. PubMed ID: 21210027 [TBL] [Abstract][Full Text] [Related]
22. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts. Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263 [TBL] [Abstract][Full Text] [Related]
23. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation. Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332 [TBL] [Abstract][Full Text] [Related]
24. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles. Haldar KK; Kundu S; Patra A ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348 [TBL] [Abstract][Full Text] [Related]
25. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications. Yang G; Chen D; Lv P; Kong X; Sun Y; Wang Z; Yuan Z; Liu H; Yang J Sci Rep; 2016 Oct; 6():35252. PubMed ID: 27734945 [TBL] [Abstract][Full Text] [Related]
26. Structural and electronic effects of carbon-supported Pt(x)Pd(1-x) nanoparticles on the electrocatalytic activity of the oxygen-reduction reaction and on methanol tolerance. Chang SH; Su WN; Yeh MH; Pan CJ; Yu KL; Liu DG; Lee JF; Hwang BJ Chemistry; 2010 Sep; 16(36):11064-71. PubMed ID: 20690117 [TBL] [Abstract][Full Text] [Related]
27. Controllable galvanic synthesis of triangular Ag-Pd alloy nanoframes for efficient electrocatalytic methanol oxidation. Xu L; Luo Z; Fan Z; Yu S; Chen J; Liao Y; Xue C Chemistry; 2015 Jun; 21(24):8691-5. PubMed ID: 25925988 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of nanoporous Cu-Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis. Xu C; Liu Y; Wang J; Geng H; Qiu H ACS Appl Mater Interfaces; 2011 Dec; 3(12):4626-32. PubMed ID: 22034948 [TBL] [Abstract][Full Text] [Related]
29. A core-shell templated approach to the nanocomposites of silver sulfide and noble metal nanoparticles with hollow/cage-bell structures. Liu H; Ye F; Cao H; Ji G; Lee JY; Yang J Nanoscale; 2013 Aug; 5(15):6901-7. PubMed ID: 23783584 [TBL] [Abstract][Full Text] [Related]
30. Enriching Silver Nanocrystals with a Second Noble Metal. Wu Y; Sun X; Yang Y; Li J; Zhang Y; Qin D Acc Chem Res; 2017 Jul; 50(7):1774-1784. PubMed ID: 28678472 [TBL] [Abstract][Full Text] [Related]
31. Synthesis of Pt-Pd Bimetallic Porous Nanostructures as Electrocatalysts for the Methanol Oxidation Reaction. Yang Y; Cao Y; Yang L; Huang Z; Long NV Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29601490 [TBL] [Abstract][Full Text] [Related]
32. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core. Mednikov EG; Jewell MC; Dahl LF J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929 [TBL] [Abstract][Full Text] [Related]
33. Strain-induced Stranski-Krastanov growth of Pd@Pt core-shell hexapods and octapods as electrocatalysts for methanol oxidation. Xiong Y; Ma Y; Li J; Huang J; Yan Y; Zhang H; Wu J; Yang D Nanoscale; 2017 Aug; 9(31):11077-11084. PubMed ID: 28741632 [TBL] [Abstract][Full Text] [Related]
34. Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction. Jiang G; Zhu H; Zhang X; Shen B; Wu L; Zhang S; Lu G; Wu Z; Sun S ACS Nano; 2015 Nov; 9(11):11014-22. PubMed ID: 26434498 [TBL] [Abstract][Full Text] [Related]
35. Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures. Zhou M; Wang H; Vara M; Hood ZD; Luo M; Yang TH; Bao S; Chi M; Xiao P; Zhang Y; Xia Y J Am Chem Soc; 2016 Sep; 138(37):12263-70. PubMed ID: 27568848 [TBL] [Abstract][Full Text] [Related]
36. Scalable Bromide-Triggered Synthesis of Pd@Pt Core-Shell Ultrathin Nanowires with Enhanced Electrocatalytic Performance toward Oxygen Reduction Reaction. Li HH; Ma SY; Fu QQ; Liu XJ; Wu L; Yu SH J Am Chem Soc; 2015 Jun; 137(24):7862-8. PubMed ID: 26011682 [TBL] [Abstract][Full Text] [Related]
37. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. Zhao X; Chen S; Fang Z; Ding J; Sang W; Wang Y; Zhao J; Peng Z; Zeng J J Am Chem Soc; 2015 Mar; 137(8):2804-7. PubMed ID: 25675212 [TBL] [Abstract][Full Text] [Related]
38. Metallic nanocages: synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. Wang L; Yamauchi Y J Am Chem Soc; 2013 Nov; 135(45):16762-5. PubMed ID: 24171407 [TBL] [Abstract][Full Text] [Related]
39. Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis. Tao L; Huang B; Jin F; Yang Y; Luo M; Sun M; Liu Q; Gao F; Guo S ACS Nano; 2020 Sep; 14(9):11570-11578. PubMed ID: 32816456 [TBL] [Abstract][Full Text] [Related]
40. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction. Xu L; Luo Z; Fan Z; Zhang X; Tan C; Li H; Zhang H; Xue C Nanoscale; 2014 Oct; 6(20):11738-43. PubMed ID: 25155648 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]