BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27079927)

  • 1. Electroosmotic transport of immiscible binary system with a layer of non-conducting fluid under interfacial slip: The role applied pressure gradient.
    Gaikwad H; Basu DN; Mondal PK
    Electrophoresis; 2016 Jul; 37(14):1998-2009. PubMed ID: 27079927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slip-driven electroosmotic transport through porous media.
    Gaikwad H; Mondal PK
    Electrophoresis; 2017 Mar; 38(5):596-606. PubMed ID: 27921289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroosmosis of Powell-Eyring fluids under interfacial slip.
    Goswami P; Mondal PK; Dutta S; Chakraborty S
    Electrophoresis; 2015 Mar; 36(5):703-11. PubMed ID: 25502924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroosmotic flow in a water column surrounded by an immiscible liquid.
    Movahed S; Khani S; Wen JZ; Li D
    J Colloid Interface Sci; 2012 Apr; 372(1):207-11. PubMed ID: 22336326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsating electric field modulated contact line dynamics of immiscible binary systems in narrow confinements under an electrical double layer phenomenon.
    Mondal PK; Ghosh U; Bandopadhyay A; DasGupta D; Chakraborty S
    Soft Matter; 2014 Nov; 10(42):8512-23. PubMed ID: 25242073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Electric Effects on a Non-Isothermal Electroosmotic Flow in a Microcapillary Tube Filled by Two Immiscible Fluids.
    Matías A; Méndez F; Bautista O
    Micromachines (Basel); 2017 Jul; 8(8):. PubMed ID: 30400424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheology-modulated contact line dynamics of an immiscible binary system under electrical double layer phenomena.
    Mondal PK; DasGupta D; Chakraborty S
    Soft Matter; 2015 Sep; 11(33):6692-702. PubMed ID: 26221770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined electroosmotically and pressure driven flow in soft nanofluidics.
    Matin MH; Ohshima H
    J Colloid Interface Sci; 2015 Dec; 460():361-9. PubMed ID: 26385594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
    Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH
    J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials.
    Zhao C; Yang C
    Electrophoresis; 2010 Mar; 31(5):973-9. PubMed ID: 20191559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Start-Up Electroosmotic Flow of Multi-Layer Immiscible Maxwell Fluids in a Slit Microchannel.
    Escandón J; Torres D; Hernández C; Vargas R
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32764332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotating electroosmotic flow of power-law fluid through polyelectrolyte grafted microchannel.
    Patel M; Harish Kruthiventi SS; Kaushik P
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111058. PubMed ID: 32408258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Start-up of electrophoresis of an arbitrarily oriented dielectric cylinder.
    Chen GY; Keh HJ
    Electrophoresis; 2014 Sep; 35(18):2560-5. PubMed ID: 24946169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic-field-driven alteration in capillary filling dynamics in a narrow fluidic channel.
    Gorthi SR; Mondal PK; Biswas G
    Phys Rev E; 2017 Jul; 96(1-1):013113. PubMed ID: 29347204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-fluid electroosmotic flow in microchannels.
    Gao Y; Wong TN; Yang C; Ooi KT
    J Colloid Interface Sci; 2005 Apr; 284(1):306-14. PubMed ID: 15752818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streaming potential-modulated capillary filling dynamics of immiscible fluids.
    Bandopadhyay A; Mandal S; Chakraborty S
    Soft Matter; 2016 Feb; 12(7):2056-65. PubMed ID: 26758228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of magnetic field on electroosmotic flow of viscoelastic fluids in a microchannel.
    Wang X; Qiao Y; Qi H; Xu H
    Electrophoresis; 2021 Nov; 42(21-22):2347-2355. PubMed ID: 33811361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced charge electroosmosis micropumps using arrays of Janus micropillars.
    Paustian JS; Pascall AJ; Wilson NM; Squires TM
    Lab Chip; 2014 Sep; 14(17):3300-12. PubMed ID: 25000878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of interfacial Maxwell stress on time periodic electro-osmotic flow in a thin liquid film with a flat interface.
    Mayur M; Amiroudine S; Lasseux D; Chakraborty S
    Electrophoresis; 2014 Mar; 35(5):670-80. PubMed ID: 24123086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.