These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 27079927)
21. Spreadsheet analysis of the field-driven start-up flow in a microfluidic channel. Mondal PK; Roy M Electrophoresis; 2021 Dec; 42(23):2465-2473. PubMed ID: 33856072 [TBL] [Abstract][Full Text] [Related]
23. Electric-field-driven contact-line dynamics of two immiscible fluids over chemically patterned surfaces in narrow confinements. Mondal PK; Ghosh U; Bandopadhyay A; DasGupta D; Chakraborty S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023022. PubMed ID: 24032938 [TBL] [Abstract][Full Text] [Related]
24. Capillary transport of two immiscible fluids in presence of electroviscous retardation. Bandopadhyay A; Mandal S; Chakraborty S Electrophoresis; 2017 Mar; 38(5):747-754. PubMed ID: 27981589 [TBL] [Abstract][Full Text] [Related]
25. Mathematical modelling of ciliary propulsion of an electrically-conducting Johnson-Segalman physiological fluid in a channel with slip. Manzoor N; Bég OA; Maqbool K; Shaheen S Comput Methods Biomech Biomed Engin; 2019 May; 22(7):685-695. PubMed ID: 30829056 [TBL] [Abstract][Full Text] [Related]
26. Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically patterned microchannels. Kuksenok O; Balazs AC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011502. PubMed ID: 12935145 [TBL] [Abstract][Full Text] [Related]
27. Dynamic interfacial effect of electroosmotic slip flow with a moving capillary front in hydrophobic circular microchannels. Yang J; Lu F; Kwok DY J Chem Phys; 2004 Oct; 121(15):7443-8. PubMed ID: 15473818 [TBL] [Abstract][Full Text] [Related]
28. Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices. Chakraborty J; Ray S; Chakraborty S Electrophoresis; 2012 Feb; 33(3):419-25. PubMed ID: 22212910 [TBL] [Abstract][Full Text] [Related]
29. Interfacial dynamics of two immiscible fluids in spatially periodic porous media: the role of substrate wettability. Mondal PK; DasGupta D; Chakraborty S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013003. PubMed ID: 25122365 [TBL] [Abstract][Full Text] [Related]
30. On the generation of nonlinear travelling waves in confined geometries using electric fields. Cimpeanu R; Papageorgiou DT Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936019 [TBL] [Abstract][Full Text] [Related]
31. Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics. Matin MH; Ohshima H J Colloid Interface Sci; 2016 Aug; 476():167-176. PubMed ID: 27214147 [TBL] [Abstract][Full Text] [Related]
32. Electrokinetically modulated peristaltic transport of power-law fluids. Goswami P; Chakraborty J; Bandopadhyay A; Chakraborty S Microvasc Res; 2016 Jan; 103():41-54. PubMed ID: 26524260 [TBL] [Abstract][Full Text] [Related]
33. Surface charge-dependent hydrodynamic properties of an electroosmotic slip flow. Rezaei M; Azimian AR; Pishevar AR Phys Chem Chem Phys; 2018 Dec; 20(48):30365-30375. PubMed ID: 30489580 [TBL] [Abstract][Full Text] [Related]
34. Electroosmosis of Viscoelastic Fluids: Role of Wall Depletion Layer. Mukherjee S; Das SS; Dhar J; Chakraborty S; DasGupta S Langmuir; 2017 Oct; 33(43):12046-12055. PubMed ID: 28945093 [TBL] [Abstract][Full Text] [Related]
35. Electrophoresis of solid particles at large Peclet numbers. Mishchuk NA; Dukhin SS Electrophoresis; 2002 Jul; 23(13):2012-22. PubMed ID: 12210253 [TBL] [Abstract][Full Text] [Related]
36. Analysis of Electroviscous Effect for Flow of Micropolar Fluids in a Nanochannel with Overlapping Electric Double Layers at High Zeta Potential. Banerjee D; Pati S; Biswas P Langmuir; 2024 Oct; 40(40):21128-21138. PubMed ID: 39344783 [TBL] [Abstract][Full Text] [Related]
37. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel. Zhao C; Yang C Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874 [TBL] [Abstract][Full Text] [Related]
38. Thermocapillary-actuated contact-line motion of immiscible binary fluids over substrates with patterned wettability in narrow confinement. DasGupta D; Mondal PK; Chakraborty S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023011. PubMed ID: 25215824 [TBL] [Abstract][Full Text] [Related]
39. Electroosmotic flow: From microfluidics to nanofluidics. Alizadeh A; Hsu WL; Wang M; Daiguji H Electrophoresis; 2021 Apr; 42(7-8):834-868. PubMed ID: 33382088 [TBL] [Abstract][Full Text] [Related]
40. ac electroosmosis in rectangular microchannels. Campisi M; Accoto D; Dario P J Chem Phys; 2005 Nov; 123(20):204724. PubMed ID: 16351310 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]