These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 27080164)
1. Facile fabrication of properties-controllable graphene sheet. Choi JS; Choi H; Kim KC; Jeong HY; Yu YJ; Kim JT; Kim JS; Shin JW; Cho H; Choi CG Sci Rep; 2016 Apr; 6():24525. PubMed ID: 27080164 [TBL] [Abstract][Full Text] [Related]
2. Opposite Behavior of Multilayer Graphene/ Indium-Tin-Oxide Kim TK; Yoon YJ; Oh SK; Cha YJ; Hong IY; Cho MU; Hong CH; Choi HK; Kwak JS J Nanosci Nanotechnol; 2018 Sep; 18(9):6106-6111. PubMed ID: 29677751 [TBL] [Abstract][Full Text] [Related]
3. Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode. Xu H; Wang H; Wu C; Lin N; Soomro AM; Guo H; Liu C; Yang X; Wu Y; Cai D; Kang J Nanoscale; 2015 Jun; 7(24):10613-21. PubMed ID: 26018299 [TBL] [Abstract][Full Text] [Related]
4. Embedded Ag/Ni Metal-Mesh with Low Surface Roughness As Transparent Conductive Electrode for Optoelectronic Applications. Chen X; Guo W; Xie L; Wei C; Zhuang J; Su W; Cui Z ACS Appl Mater Interfaces; 2017 Oct; 9(42):37048-37054. PubMed ID: 28967742 [TBL] [Abstract][Full Text] [Related]
5. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Jo G; Choe M; Cho CY; Kim JH; Park W; Lee S; Hong WK; Kim TW; Park SJ; Hong BH; Kahng YH; Lee T Nanotechnology; 2010 Apr; 21(17):175201. PubMed ID: 20368676 [TBL] [Abstract][Full Text] [Related]
6. Challenge beyond Graphene: Metal Oxide/Graphene/Metal Oxide Electrodes for Optoelectronic Devices. Kim S; Kwon KC; Park JY; Cho HW; Lee I; Kim SY; Lee JL ACS Appl Mater Interfaces; 2016 May; 8(20):12932-9. PubMed ID: 27135260 [TBL] [Abstract][Full Text] [Related]
7. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters. Kang J; Jang Y; Kim Y; Cho SH; Suhr J; Hong BH; Choi JB; Byun D Nanoscale; 2015 Apr; 7(15):6567-73. PubMed ID: 25790123 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of highly conductive graphene/ITO transparent bi-film through CVD and organic additives-free sol-gel techniques. Hemasiri BWNH; Kim JK; Lee JM Sci Rep; 2017 Dec; 7(1):17868. PubMed ID: 29259236 [TBL] [Abstract][Full Text] [Related]
9. Using a layer-by-layer assembly method to fabricate a uniform and conductive nitrogen-doped graphene anode for indium-tin oxide-free organic light-emitting diodes. Wu X; Li S; Zhao Y; Tang Y; Liu J; Guo X; Wu D; He G ACS Appl Mater Interfaces; 2014 Sep; 6(18):15753-9. PubMed ID: 25162178 [TBL] [Abstract][Full Text] [Related]
10. Organic solar cells using CVD-grown graphene electrodes. Kim H; Bae SH; Han TH; Lim KG; Ahn JH; Lee TW Nanotechnology; 2014 Jan; 25(1):014012. PubMed ID: 24334624 [TBL] [Abstract][Full Text] [Related]
11. Layer-by-layer hybrid chemical doping for high transmittance uniformity in graphene-polymer flexible transparent conductive nanocomposite. Biswas C; Candan I; Alaskar Y; Qasem H; Zhang W; Stieg AZ; Xie YH; Wang KL Sci Rep; 2018 Jul; 8(1):10259. PubMed ID: 29980765 [TBL] [Abstract][Full Text] [Related]
12. Ultrathin organic solar cells with graphene doped by ferroelectric polarization. Kim K; Bae SH; Toh CT; Kim H; Cho JH; Whang D; Lee TW; Özyilmaz B; Ahn JH ACS Appl Mater Interfaces; 2014 Mar; 6(5):3299-304. PubMed ID: 24521002 [TBL] [Abstract][Full Text] [Related]
13. Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping. Choi D; Kuru C; Choi C; Noh K; Hwang S; Choi W; Jin S Small; 2015 Jul; 11(26):3143-52. PubMed ID: 25828562 [TBL] [Abstract][Full Text] [Related]
14. Optical Transmittance Enhancement of Flexible Copper Film Electrodes with a Wetting Layer for Organic Solar Cells. Zhao G; Song M; Chung HS; Kim SM; Lee SG; Bae JS; Bae TS; Kim D; Lee GH; Han SZ; Lee HS; Choi EA; Yun J ACS Appl Mater Interfaces; 2017 Nov; 9(44):38695-38705. PubMed ID: 29039201 [TBL] [Abstract][Full Text] [Related]
15. Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors. Dou L; Cui F; Yu Y; Khanarian G; Eaton SW; Yang Q; Resasco J; Schildknecht C; Schierle-Arndt K; Yang P ACS Nano; 2016 Feb; 10(2):2600-6. PubMed ID: 26820809 [TBL] [Abstract][Full Text] [Related]
16. Selective Atomic Layer Deposition of Metals on Graphene for Transparent Conducting Electrode Application. Kim M; Nabeya S; Han SM; Kim MS; Lee S; Kim HM; Cho SY; Lee DJ; Kim SH; Kim KB ACS Appl Mater Interfaces; 2020 Mar; 12(12):14331-14340. PubMed ID: 32017528 [TBL] [Abstract][Full Text] [Related]
17. Hybrid films with graphene oxide and metal nanoparticles could now replace indium tin oxide. Varela-Rizo H; Martín-Gullón I; Terrones M ACS Nano; 2012 Jun; 6(6):4565-72. PubMed ID: 22686543 [TBL] [Abstract][Full Text] [Related]
18. Flexion bonding transfer of multilayered graphene as a top electrode in transparent organic light-emitting diodes. Tae Lim J; Lee H; Cho H; Kwon BH; Sung Cho N; Kuk Lee B; Park J; Kim J; Han JH; Yang JH; Yu BG; Hwang CS; Chu Lim S; Lee JI Sci Rep; 2015 Dec; 5():17748. PubMed ID: 26626439 [TBL] [Abstract][Full Text] [Related]
19. Chemical vapor deposition of graphene single crystals. Yan Z; Peng Z; Tour JM Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957 [TBL] [Abstract][Full Text] [Related]
20. Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses. Mansour AE; Dey S; Amassian A; Tanielian MH ACS Appl Mater Interfaces; 2015 Aug; 7(32):17692-9. PubMed ID: 26200126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]