BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27080260)

  • 1. Fracture and Growth Are Competing Forces Determining the Fate of Conformers in Tau Fibril Populations.
    Meyer V; Holden MR; Weismiller HA; Eaton GR; Eaton SS; Margittai M
    J Biol Chem; 2016 Jun; 291(23):12271-81. PubMed ID: 27080260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin Labeling and Characterization of Tau Fibrils Using Electron Paramagnetic Resonance (EPR).
    Meyer V; Margittai M
    Methods Mol Biol; 2016; 1345():185-99. PubMed ID: 26453213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms.
    Weismiller HA; Murphy R; Wei G; Ma B; Nussinov R; Margittai M
    J Biol Chem; 2018 Nov; 293(45):17336-17348. PubMed ID: 30242125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based inhibitors halt prion-like seeding by Alzheimer's disease-and tauopathy-derived brain tissue samples.
    Seidler PM; Boyer DR; Murray KA; Yang TP; Bentzel M; Sawaya MR; Rosenberg G; Cascio D; Williams CK; Newell KL; Ghetti B; DeTure MA; Dickson DW; Vinters HV; Eisenberg DS
    J Biol Chem; 2019 Nov; 294(44):16451-16464. PubMed ID: 31537646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single mutations in tau modulate the populations of fibril conformers through seed selection.
    Meyer V; Dinkel PD; Luo Y; Yu X; Wei G; Zheng J; Eaton GR; Ma B; Nussinov R; Eaton SS; Margittai M
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1590-3. PubMed ID: 24453187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloidogenic cross-seeding of Tau protein: Transient emergence of structural variants of fibrils.
    Nizynski B; Nieznanska H; Dec R; Boyko S; Dzwolak W; Nieznanski K
    PLoS One; 2018; 13(7):e0201182. PubMed ID: 30024984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Illuminating the Structural Basis of Tau Aggregation by Intramolecular Distance Tracking: A Perspective on Methods.
    Zeng Z; Fichou Y; Vigers M; Tsay K; Han S
    J Phys Chem B; 2022 Sep; 126(34):6384-6395. PubMed ID: 35994024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of size distribution and (Pro249-Ser258) epitope exposure in in vitro and in vivo derived Tau fibrils.
    Marreiro A; Van Kolen K; Sousa C; Temmerman L; Vasconcelos B; Crespo-Rodriguez R; van Weering JRT; Van Dam D; De Deyn PP; Apetri A; Schoofs L; Mercken MH
    BMC Mol Cell Biol; 2020 Nov; 21(1):81. PubMed ID: 33183222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro 0N4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments.
    Dregni AJ; Mandala VS; Wu H; Elkins MR; Wang HK; Hung I; DeGrado WF; Hong M
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16357-16366. PubMed ID: 31358628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloidogenesis of Tau protein.
    Nizynski B; Dzwolak W; Nieznanski K
    Protein Sci; 2017 Nov; 26(11):2126-2150. PubMed ID: 28833749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tau strains shape disease.
    Vaquer-Alicea J; Diamond MI; Joachimiak LA
    Acta Neuropathol; 2021 Jul; 142(1):57-71. PubMed ID: 33830330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elongation of Fibrils Formed by a Tau Fragment is Inhibited by a Transient Dimeric Intermediate.
    Kumar H; Udgaonkar JB
    J Phys Chem B; 2022 May; 126(18):3385-3397. PubMed ID: 35503811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-dependent abnormal aggregation of human Tau fragment in an inducible cell model.
    Liu XL; Hu JY; Hu MY; Zhang Y; Hong ZY; Cheng XQ; Chen J; Pang DW; Liang Y
    Biochim Biophys Acta; 2015 Aug; 1852(8):1561-73. PubMed ID: 25912737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo.
    Vasconcelos B; Stancu IC; Buist A; Bird M; Wang P; Vanoosthuyse A; Van Kolen K; Verheyen A; Kienlen-Campard P; Octave JN; Baatsen P; Moechars D; Dewachter I
    Acta Neuropathol; 2016 Apr; 131(4):549-69. PubMed ID: 26739002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Synuclein Fibrils Exhibit Gain of Toxic Function, Promoting Tau Aggregation and Inhibiting Microtubule Assembly.
    Oikawa T; Nonaka T; Terada M; Tamaoka A; Hisanaga S; Hasegawa M
    J Biol Chem; 2016 Jul; 291(29):15046-56. PubMed ID: 27226637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Lys 280 → Gln mutation mimicking disease-linked acetylation of Lys 280 in tau extends the structural core of fibrils and modulates their catalytic properties.
    Kumar H; Udgaonkar JB
    Protein Sci; 2021 Apr; 30(4):785-803. PubMed ID: 33496017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cofactors are essential constituents of stable and seeding-active tau fibrils.
    Fichou Y; Lin Y; Rauch JN; Vigers M; Zeng Z; Srivastava M; Keller TJ; Freed JH; Kosik KS; Han S
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13234-13239. PubMed ID: 30538196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational diversity of wild-type Tau fibrils specified by templated conformation change.
    Frost B; Ollesch J; Wille H; Diamond MI
    J Biol Chem; 2009 Feb; 284(6):3546-51. PubMed ID: 19010781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asparagine residue 368 is involved in Alzheimer's disease tau strain-specific aggregation.
    Shimonaka S; Matsumoto SE; Elahi M; Ishiguro K; Hasegawa M; Hattori N; Motoi Y
    J Biol Chem; 2020 Oct; 295(41):13996-14014. PubMed ID: 32759167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.